X | 0 | 1 | 2 | otherwise |
P(X) | k | 2k | 3k | 0 |
The given probabilities are \(k, 2k, 3k\) for \(X = 0, 1, 2\), respectively. Since the sum of probabilities must equal 1:
\[k + 2k + 3k = 1 \implies 6k = 1 \implies k = \frac{1}{6}.\]
For (A) \(k\): From above, \(k = \frac{1}{6}\). Match: (A) → (IV).
For (B) \(P(X<2)\): This is the sum of probabilities for \(X = 0\) and \(X = 1\):
\[P(X<2) = P(X = 0) + P(X = 1) = k + 2k = 3k.\]
Substituting \(k = \frac{1}{6}\):
\[P(X<2) = 3 \cdot \frac{1}{6} = \frac{1}{2}.\]
Match: (B) → (III).
For (C) \(E(X)\): The expected value is:
\[E(X) = \sum X \cdot P(X) = 0 \cdot k + 1 \cdot 2k + 2 \cdot 3k = 0 + 2k + 6k = 8k.\]
Substituting \(k = \frac{1}{6}\):
\[E(X) = 8 \cdot \frac{1}{6} = \frac{4}{3}.\]
Match: (C) → (II).
For (D) \(P(1 \leq X \leq 2)\): This is the sum of probabilities for \(X = 1\) and \(X = 2\):
\[P(1 \leq X \leq 2) = P(X = 1) + P(X = 2) = 2k + 3k = 5k.\]
Substituting \(k = \frac{1}{6}\):
\[P(1 \leq X \leq 2) = 5 \cdot \frac{1}{6} = \frac{5}{6}.\]
Match: (D) → (I).
Final matching: (A) → (IV), (B) → (III), (C) → (II), (D) → (I).
X | 0 | 1 | 2 | otherwise |
P(X) | k | 2k | 3k | 0 |
Then:
(A) \( k = \frac{1}{6} \)
(B) \( P(X < 2) = \frac{1}{2} \)
(C) \( E(X) = \frac{3}{4} \)
(D) \( P(1 < X \leq 2) = \frac{5}{6} \)
Choose the correct answer from the options given below:
X | 3 | 4 | 5 |
---|---|---|---|
P(X) | 0.5 | 0.2 | 0.3 |
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
P(X) | 0 | m | 2m | 2m | 3m | m² | 2m² | 7m² + m |
X | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
P(X) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
List-I | List-II |
---|---|
(A) k | (I) 7/10 |
(B) P(X < 3) | (II) 53/100 |
(C) P(X ≥ 2) | (III) 1/10 |
(D) P(2 < X ≤ 7) | (IV) 3/10 |
\(X\) | \(2\) | \(3\) | \(4\) | \(5\) |
\(P(X)\) | \(\frac5k\) | \(\frac7k\) | \(\frac9k\) | \(\frac{11}{k}\) |
then the value of k is: