X | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
P(X) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
List-I | List-II |
---|---|
(A) k | (I) 7/10 |
(B) P(X < 3) | (II) 53/100 |
(C) P(X ≥ 2) | (III) 1/10 |
(D) P(2 < X ≤ 7) | (IV) 3/10 |
We know that the sum of all probabilities \(P(X)\) must equal 1:
\(k + 2k + 2k + 3k + k^2 + 2k^2 + (7k^2 + k) = 1.\)
Simplify the equation:
\(8k + 10k^2 = 1.\)
Dividing through by 2:
\(4k + 5k^2 = \frac{1}{2}.\)
Solve the quadratic equation:
\(5k^2 + 4k - \frac{1}{2} = 0.\)
Using the quadratic formula:
\(k = \frac{-4 \pm \sqrt{4^2 - 4(5)(-\frac{1}{2})}}{2(5)} = \frac{-4 \pm \sqrt{16 + 10}}{10} = \frac{-4 \pm \sqrt{26}}{10}.\)
Since \(k>0\), we take:
\(k = \frac{-4 + \sqrt{26}}{10}.\)
Substituting \(k\), compute probabilities:
\(P(X<3) = P(1) + P(2) = k + 2k = 3k.\)
\(P(X>2) = P(3) + P(4) + P(5) + P(6) + P(7) = 2k + 3k + k^2 + 2k^2 + (7k^2 + k).\)
\(P(2<X<7) = P(3) + P(4) + P(5) + P(6).\)
Matching each value to the given List-II:
\(k = \frac{1}{10}\) (Option III)
\(P(X<3) = \frac{3}{10}\) (Option IV)
\(P(X>2) = \frac{7}{10}\) (Option I)
\(P(2<X<7) = \frac{53}{100}\) (Option II)
Final Matching: (A) - (III), (B) - (IV), (C) - (I), (D) - (II)
X | 0 | 1 | 2 | otherwise |
P(X) | k | 2k | 3k | 0 |
Then:
(A) \( k = \frac{1}{6} \)
(B) \( P(X < 2) = \frac{1}{2} \)
(C) \( E(X) = \frac{3}{4} \)
(D) \( P(1 < X \leq 2) = \frac{5}{6} \)
Choose the correct answer from the options given below:
X | 3 | 4 | 5 |
---|---|---|---|
P(X) | 0.5 | 0.2 | 0.3 |
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
P(X) | 0 | m | 2m | 2m | 3m | m² | 2m² | 7m² + m |
X | 0 | 1 | 2 | otherwise |
P(X) | k | 2k | 3k | 0 |
\(X\) | \(2\) | \(3\) | \(4\) | \(5\) |
\(P(X)\) | \(\frac5k\) | \(\frac7k\) | \(\frac9k\) | \(\frac{11}{k}\) |
then the value of k is: