Step 1: Understanding the Concept:
This problem requires the use of trigonometric identities, specifically the relationship between trigonometric functions of complementary angles (angles that sum to 90\(^\circ\)).
Step 2: Key Formula or Approach:
The key identities are:
1. \(\tan(90^\circ - \theta) = \cot\theta\)
2. \(\tan\theta \cdot \cot\theta = 1\)
We also need the standard value of \(\tan 60^\circ = \sqrt{3}\).
Step 3: Detailed Explanation:
Let's start with the Left Hand Side (LHS) of the equation:
\[ \text{LHS} = \tan 7^\circ \cdot \tan 60^\circ \cdot \tan 83^\circ \]
Notice that \(7^\circ + 83^\circ = 90^\circ\). This means they are complementary angles. We can rewrite \(\tan 83^\circ\) using the complementary angle identity:
\[ \tan 83^\circ = \tan(90^\circ - 7^\circ) = \cot 7^\circ \]
Now substitute this back into the LHS expression:
\[ \text{LHS} = \tan 7^\circ \cdot \tan 60^\circ \cdot \cot 7^\circ \]
Rearrange the terms to group the complementary functions together:
\[ \text{LHS} = (\tan 7^\circ \cdot \cot 7^\circ) \cdot \tan 60^\circ \]
Using the identity \(\tan\theta \cdot \cot\theta = 1\):
\[ \text{LHS} = (1) \cdot \tan 60^\circ \]
Now, substitute the known value of \(\tan 60^\circ\):
\[ \text{LHS} = 1 \cdot \sqrt{3} = \sqrt{3} \]
This is equal to the Right Hand Side (RHS).
Step 4: Final Answer:
Since LHS = RHS, the identity is proved.