Starting with the Left-Hand Side (LHS):
\[
\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}
\]
Multiply numerator and denominator by $(1-\cos\theta)$:
\[
= \sqrt{\frac{(1-\cos\theta)^2}{(1+\cos\theta)(1-\cos\theta)}}
\]
\[
= \sqrt{\frac{(1-\cos\theta)^2}{1-\cos^2\theta}}
\]
\[
= \sqrt{\frac{(1-\cos\theta)^2}{\sin^2\theta}}
\]
\[
= \frac{1-\cos\theta}{\sin\theta}
\]
Now simplify:
\[
\frac{1-\cos\theta}{\sin\theta} = \frac{1}{\sin\theta} - \frac{\cos\theta}{\sin\theta}
\]
\[
= \csc\theta - \cot\theta
\]
Hence,
\[
\sqrt{\frac{1-\cos\theta}{1+\cos\theta}} = \csc\theta - \cot\theta
\]
\[
\boxed{\text{Proved}}
\]