The value of $\dfrac{1+\cot^2 \theta}{1+\tan^2 \theta}$ will be:
Step 1: Recall Pythagorean identities
\[
1 + \cot^2 \theta = \csc^2 \theta \text{and} 1 + \tan^2 \theta = \sec^2 \theta
\]
Step 2: Substitute these identities into the given expression
\[
\frac{1+\cot^2 \theta}{1+\tan^2 \theta} = \frac{\csc^2 \theta}{\sec^2 \theta}
\]
Step 3: Simplify the ratio
\[
\frac{\csc^2 \theta}{\sec^2 \theta} = \frac{\dfrac{1}{\sin^2 \theta}}{\dfrac{1}{\cos^2 \theta}}
= \frac{\cos^2 \theta}{\sin^2 \theta}
= \cot^2 \theta
\]
Wait, let's carefully check:
- Numerator: $1+\cot^2 \theta = \csc^2 \theta$
- Denominator: $1+\tan^2 \theta = \sec^2 \theta$
So:
\[
\frac{\csc^2 \theta}{\sec^2 \theta} = \frac{\dfrac{1}{\sin^2 \theta}}{\dfrac{1}{\cos^2 \theta}} = \frac{\cos^2 \theta}{\sin^2 \theta} = \cot^2 \theta
\]
Step 4: Final Answer
\[
\boxed{\dfrac{1+\cot^2 \theta}{1+\tan^2 \theta} = \cot^2 \theta}
\]
Thus, the correct option is (D).
If $3 \cot A = 4$, then the value of $\dfrac{1 - \tan^2 A}{1 + \tan^2 A}$ will be: