The value of $\dfrac{1+\cot^2 \theta}{1+\tan^2 \theta}$ will be:
Step 1: Recall Pythagorean identities
\[
1 + \cot^2 \theta = \csc^2 \theta \text{and} 1 + \tan^2 \theta = \sec^2 \theta
\]
Step 2: Substitute these identities into the given expression
\[
\frac{1+\cot^2 \theta}{1+\tan^2 \theta} = \frac{\csc^2 \theta}{\sec^2 \theta}
\]
Step 3: Simplify the ratio
\[
\frac{\csc^2 \theta}{\sec^2 \theta} = \frac{\dfrac{1}{\sin^2 \theta}}{\dfrac{1}{\cos^2 \theta}}
= \frac{\cos^2 \theta}{\sin^2 \theta}
= \cot^2 \theta
\]
Wait, let's carefully check:
- Numerator: $1+\cot^2 \theta = \csc^2 \theta$
- Denominator: $1+\tan^2 \theta = \sec^2 \theta$
So:
\[
\frac{\csc^2 \theta}{\sec^2 \theta} = \frac{\dfrac{1}{\sin^2 \theta}}{\dfrac{1}{\cos^2 \theta}} = \frac{\cos^2 \theta}{\sin^2 \theta} = \cot^2 \theta
\]
Step 4: Final Answer
\[
\boxed{\dfrac{1+\cot^2 \theta}{1+\tan^2 \theta} = \cot^2 \theta}
\]
Thus, the correct option is (D).
Prove that $\dfrac{1+\sec\theta}{\sec\theta}=\dfrac{\sin^2\theta}{1-\cos\theta}$.
If $3 \cot A = 4$, then the value of $\dfrac{1 - \tan^2 A}{1 + \tan^2 A}$ will be:
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.