Step 1: Simplify the LHS
\[
\frac{1+\sec\theta}{\sec\theta}=\frac{1}{\sec\theta}+1=\cos\theta+1.
\]
Step 2: Simplify the RHS using $\sin^2\theta=1-\cos^2\theta$
\[
\frac{\sin^2\theta}{1-\cos\theta}=\frac{1-\cos^2\theta}{1-\cos\theta}
=\frac{(1-\cos\theta)(1+\cos\theta)}{1-\cos\theta}=1+\cos\theta.
\]
Conclusion:
Both sides reduce to $1+\cos\theta$, hence proved.
[4pt]
\[
\boxed{\dfrac{1+\sec\theta}{\sec\theta}=\dfrac{\sin^2\theta}{1-\cos\theta}}
\]
The value of $\dfrac{1+\cot^2 \theta}{1+\tan^2 \theta}$ will be:
If $3 \cot A = 4$, then the value of $\dfrac{1 - \tan^2 A}{1 + \tan^2 A}$ will be: