Start with the LHS. Multiply numerator and denominator by $(1-\sin A)$:
\[
\frac{\sin A-\cos A+1}{\sin A+\cos A-1}
=\frac{(\sin A-\cos A+1)(1-\sin A)}{(\sin A+\cos A-1)(1-\sin A)}.
\]
Expand the numerator and use $1-\sin^2 A=\cos^2 A$:
\[
(\sin A-\cos A+1)(1-\sin A)=1-\sin^2 A-\cos A+\sin A\cos A
=\cos^2 A-\cos A+\sin A\cos A
=\cos A\big(\cos A-1+\sin A\big).
\]
Note that $\cos A-1+\sin A=(\sin A+\cos A-1)$. Hence
\[
\frac{\sin A-\cos A+1}{\sin A+\cos A-1}
=\frac{\cos A(\sin A+\cos A-1)}{(\sin A+\cos A-1)(1-\sin A)}
=\frac{\cos A}{1-\sin A}.
\]
But
\[
\frac{\cos A}{1-\sin A}=\frac{1}{\dfrac{1-\sin A}{\cos A}}
=\frac{1}{\sec A-\tan A}.
\]
Therefore,
\[
\boxed{\displaystyle \frac{\sin A-\cos A+1}{\sin A+\cos A-1}=\frac{1}{\sec A-\tan A}}.
\]