Step 1: Understand the function \( \left\lfloor x^2 \right\rfloor \).
The floor function \( \left\lfloor x^2 \right\rfloor \) gives the greatest integer less than or equal to \( x^2 \).
We need to evaluate:
\[
\int_0^{1.5} \left\lfloor x^2 \right\rfloor \, dx
\]
Step 2: Analyze \( x^2 \) over the range \( [0, 1.5] \).
For \( 0 \leq x<1 \):
\[
0 \leq x^2<1
\quad \Rightarrow \quad
\left\lfloor x^2 \right\rfloor = 0
\]
For \( 1 \leq x<\sqrt{2} \) (approximately \( 1.414 \)):
\[
1 \leq x^2<2
\quad \Rightarrow \quad
\left\lfloor x^2 \right\rfloor = 1
\]
For \( \sqrt{2} \leq x \leq 1.5 \):
\[
2 \leq x^2 \leq 2.25
\quad \Rightarrow \quad
\left\lfloor x^2 \right\rfloor = 2
\]
Step 3: Break the integral accordingly.
Thus:
\[
\int_0^{1.5} \left\lfloor x^2 \right\rfloor \, dx = \int_0^1 0 \, dx + \int_1^{\sqrt{2}} 1 \, dx + \int_{\sqrt{2}}^{1.5} 2 \, dx
\]
Step 4: Evaluate each part.
\[
\int_0^1 0 \, dx = 0
\]
\[
\int_1^{\sqrt{2}} 1 \, dx = \sqrt{2} - 1
\]
\[
\int_{\sqrt{2}}^{1.5} 2 \, dx = 2(1.5 - \sqrt{2})
\]
Adding all parts:
\[
0 + (\sqrt{2} - 1) + 2(1.5 - \sqrt{2})
\]
Expand:
\[
= \sqrt{2} - 1 + 3 - 2\sqrt{2}
\]
\[
= (3 - 1) + (\sqrt{2} - 2\sqrt{2})
\]
\[
= 2 - \sqrt{2}
\]
Thus, the final value is \( 2 - \sqrt{2} \).