If the solution of
\[
\left( 1 + 2e^\frac{x}{y} \right) dx + 2e^\frac{x}{y} \left( 1 - \frac{x}{y} \right) dy = 0
\]
is
\[
x + \lambda y e^\frac{x}{y} = c \quad \text{(where \(c\) is an arbitrary constant), then \( \lambda \) is:}
\]
Show Hint
When solving differential equations, identifying patterns in the given equation can help choose a useful substitution that simplifies the problem.
The appearance of \( \frac{x}{y} \) in the given equation suggests the substitution:
\[
\frac{x}{y} = u
\]
Differentiating:
\[
dx = u dy + y du
\]
Rewriting the given equation using this substitution:
\[
(1 + 2e^u) (u dy + y du) + 2e^u (1 - u) dy = 0
\]
Expanding:
\[
(1 + 2e^u) y du + (1 + 2e^u) u dy + 2e^u (1 - u) dy = 0
\]
Factorizing the terms:
\[
(1 + 2e^u) du + \frac{dy}{y} = 0
\]
This is now a variable separable form:
\[
\frac{(1 + 2e^u)}{1 + 2e^u} du + \frac{dy}{y} = 0
\]
Integrating both sides:
\[
\log |1 + 2e^u| + \log |y| = \log |c|
\]
\[
(1 + 2e^u) y = c
\]
Substituting \( u = \frac{x}{y} \):
\[
(x + 2 y e^\frac{x}{y}) = c
\]
Comparing with the given general solution, we get:
\[
\lambda = 2
\]
Was this answer helpful?
0
0
Top Questions on Some Properties of Definite Integrals