Using half–angle identities: $1-\cos\theta=2\sin^2\frac{\theta}{2}$ and $\sin\theta=2\sin\frac{\theta}{2}\cos\frac{\theta}{2}$. Put $s=\sin\frac{\theta}{2}$ and $c=\cos\frac{\theta}{2}$. Then
\[
\frac{\sin\theta-\cos\theta+1}{\sin\theta+\cos\theta-1}
=\frac{2sc-(c^2-s^2)+1}{2sc+(c^2-s^2)-1}
=\frac{2sc+2s^2}{2sc-2s^2}
=\frac{c+s}{\,c-s\,}. \tag{1}
\]
Now,
\[
\sec\theta+\tan\theta=\frac{1+\sin\theta}{\cos\theta}
=\frac{1+2sc}{c^2-s^2}
=\frac{(s+c)^2}{(c+s)(c-s)}
=\frac{c+s}{\,c-s\,}. \tag{2}
\]
From (1) and (2), both sides are equal; hence proved.
\[
\boxed{\displaystyle \frac{\sin\theta-\cos\theta+1}{\sin\theta+\cos\theta-1}=\sec\theta+\tan\theta}
\]