If $3 \cot A = 4$, then the value of $\dfrac{1 - \tan^2 A}{1 + \tan^2 A}$ will be:
Step 1: Express $\cot A$
Given $3 \cot A = 4 $ $\Rightarrow$ $ \cot A = \tfrac{4}{3}$.
Thus, $\tan A = \tfrac{1}{\cot A} = \tfrac{3}{4}$.
Step 2: Apply the given expression
We need to evaluate: \[ \dfrac{1 - \tan^2 A}{1 + \tan^2 A} \] Substitute $\tan A = \tfrac{3}{4}$: \[ \tan^2 A = \left(\tfrac{3}{4}\right)^2 = \tfrac{9}{16} \] \[ \dfrac{1 - \tfrac{9}{16}}{1 + \tfrac{9}{16}} = \dfrac{\tfrac{16}{16} - \tfrac{9}{16}}{\tfrac{16}{16} + \tfrac{9}{16}} = \dfrac{\tfrac{7}{16}}{\tfrac{25}{16}} = \dfrac{7}{25} \]
Step 3: Identify trigonometric identity
We know: \[ \dfrac{1 - \tan^2 A}{1 + \tan^2 A} = \cos 2A \] Since $\tan A = \tfrac{3}{4}$, angle $A$ is acute ($0 < A < \tfrac{\pi}{2}$).
Thus, $\cos 2A$ will be negative because $2A$ lies in the second quadrant.
Hence, the correct value is $-\tfrac{7}{25}$.
Step 4: Conclusion
The required value is $-\tfrac{7}{25}$.
The correct answer is option (B).
Prove that $\dfrac{1+\sec\theta}{\sec\theta}=\dfrac{\sin^2\theta}{1-\cos\theta}$.
The value of $\dfrac{1+\cot^2 \theta}{1+\tan^2 \theta}$ will be:
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.