"Real and equal roots" $\Rightarrow$ set the discriminant to zero. Always simplify first (factor out common constants) to avoid large numbers.
For real and equal roots, discriminant $D=0$. Here $a=1,\ b=2(m-1),\ c=m+5$.
\[ D=b^2-4ac=[2(m-1)]^2-4(m+5)=0 \] \[ \Rightarrow\ 4(m-1)^2-4(m+5)=0 \Rightarrow\ (m-1)^2-(m+5)=0 \] \[ \Rightarrow\ m^2-2m+1-m-5=0 \Rightarrow\ m^2-3m-4=0 \] \[ \Rightarrow\ (m-4)(m+1)=0 \Rightarrow\ m=4\ \text{or}\ m=-1. \] \[\boxed{m=4\ \text{or}\ m=-1}\]
If the given figure shows the graph of polynomial \( y = ax^2 + bx + c \), then:
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.
Find mean of the following frequency table: