"Real and equal roots" $\Rightarrow$ set the discriminant to zero. Always simplify first (factor out common constants) to avoid large numbers.
For real and equal roots, discriminant $D=0$. Here $a=1,\ b=2(m-1),\ c=m+5$.
\[ D=b^2-4ac=[2(m-1)]^2-4(m+5)=0 \] \[ \Rightarrow\ 4(m-1)^2-4(m+5)=0 \Rightarrow\ (m-1)^2-(m+5)=0 \] \[ \Rightarrow\ m^2-2m+1-m-5=0 \Rightarrow\ m^2-3m-4=0 \] \[ \Rightarrow\ (m-4)(m+1)=0 \Rightarrow\ m=4\ \text{or}\ m=-1. \] \[\boxed{m=4\ \text{or}\ m=-1}\]
For \( X = (x_1, x_2, x_3)^T \in \mathbb{R}^3 \), consider the quadratic form:
\[ Q(X) = 2x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3. \] Let \( M \) be the symmetric matrix associated with the quadratic form \( Q(X) \) with respect to the standard basis of \( \mathbb{R}^3 \).
Let \( Y = (y_1, y_2, y_3)^T \in \mathbb{R}^3 \) be a non-zero vector, and let
\[ a_n = \frac{Y^T(M + I_3)^{n+1}Y}{Y^T(M + I_3)^n Y}, \quad n = 1, 2, 3, \dots \] Then, the value of \( \lim_{n \to \infty} a_n \) is equal to (in integer).