\( \lambda_{\alpha} < \lambda_{p} < \lambda_{e} \)
\( \lambda_{\alpha} > \lambda_{p} > \lambda_{e} \)
\( \lambda_{\alpha} = \lambda_{p} = \lambda_{e} \)
\( \lambda_{\alpha} > \lambda_{p} < \lambda_{e} \)
The De-Broglie wavelength is given by:
\[ \lambda = \frac{h}{p} = \frac{h}{\sqrt{2mK}} \]
For particles with the same kinetic energy:
\[ \lambda \propto \frac{1}{\sqrt{m}} \]
Since \( m_\alpha > m_p > m_e \), we have:
\[ \lambda_e > \lambda_p > \lambda_\alpha \]
The matter waves, the wavelength is associated with the microscopic particles like protons, electrons, neutrons, \(\alpha\)-particle etc., is or the order of \(10^{-10}m\).
The relation between de-Broglie wavelength \(\lambda\) and the kinetic energy \(K\) of the particle is given by:
\(λ = \frac{h}{m.v} = \frac{h}{√(2.m.K.E)}\)
\(\text{as K.E. is same } λ∝\frac{1}{\sqrt{m}}\)
mass of electron = \(9.1 × 10^{-31}\) kg
mass of proton = \(1.67 × 10^{-27}\) kg
mass of α-particle = \(6.68 × 10^{-27}\) kg
\(λ_e > λ_p > λ_α\)
So, the correct option is (A): \(λ_e > λ_p > λ_α\)
If the four distinct points $ (4, 6) $, $ (-1, 5) $, $ (0, 0) $ and $ (k, 3k) $ lie on a circle of radius $ r $, then $ 10k + r^2 $ is equal to
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).

