Sum of squares of modulus of all the complex numbers z satisfying \(\overline{z}=iz^2+z^2–z \)is equal to ________.
Let S be the set of (α,β),π<α,β<2π,for which the complex number\(\frac{1-i\sinα}{1+2i\sinα}\) is purely imaginary and \(\frac{1+i\cosβ}{1-2i\cosβ}\) is purely real,Let \(Zαβ = \sin2α+i\cos2β, (α,β) ∈ S\). Then\(\sum_{(\alpha, \beta) \in S} \left(iZ_{\alpha\beta} + \frac{1}{iZ_{\alpha\beta}}\right)\)is equal to
Let\(S = \left\{z∈C : z^2+\overline{z} = 0 \right\}\). Then \(∑_{z∈S}(Re(z)+Im(z))\)is equal to____.
Let a function ƒ : N →N be defined by \(f(n) = \left\{ \begin{array}{ll} 2n & n = 2,4,6,8,\ldots \\ n - 1 & n = 3,7,11,15,\ldots \\ \frac{n+1}{2} & n = 1,5,9,13 \end{array} \right.\)then, ƒ is
g :R→R be two real valued functions defined as\(f(x) = \begin{cases} -|x + 3| & x < 0 \\ e^x, & x \geq 0 \end{cases}\)and\(g(x) = \begin{cases} x^2 + k_1x ,& x < 0 \\ 4x + k_2 ,& x \geq 0 \end{cases}\)where k1 and k2 are real constants. If (goƒ) is differentiable at x = 0, then (goƒ) (–4) + (goƒ) (4) isequal to:
Let \(f(x)=max\left\{|x+1|,|x+2|,……,|x+5|\right\} \)Then \(\int_{-6}^{0} f(x) \, dx\)is equal to_______
Let f,g : R → R be functions defined by*\(f(x) = \begin{cases} [x], & x < 0 \\ |1 - x|, & x \geq 0 \end{cases}\)and \(g(x) = \begin{cases} e^x - x, & x < 0 \\ {(x - 1)^2 - 1}, & x \geq 0 \end{cases}\)Where [x] denotes the greatest integer less than or equal to x. Then, the function fog is discontinuous at exactly:
If \(f(x) = \begin{cases} x + a, & x \leq 0 \\ |x - 4|, & x > 0 \end{cases}\) and \(g(x) = \begin{cases} x + 1, & x < 0 \\ (x - 4)^2 + b, & x \geq 0 \end{cases}\) are continuous on R, then (gof) (2) + (fog) (–2) is equal to
Let \(f(x) = \begin{cases} x^3 - x^2 + 10x - 7, & x \leq 1 \\ -2x + \log_2(b^2 - 4), & x > 1 \end{cases}\)Then the set of all values of b, for which f(x) has maximum value at x = 1, is
The number of functions f, from the set\(A = {x∈N: x^2-10x+9≤0} \)to the set \(B = {n62:n∈N}\)such that\(f(x)≤(x-3)^2+1\), for every \(x∈A,\)is ______.
Let E1, E2, E3 be three mutually exclusive events such that\(P(E_1)=\frac{2+3p}{6}, P(E_2)=\frac{2−p}{8} and\ P(E_3)=\frac{1−p}{2}.\)If the maximum and minimum values of p are p1 and p2, then (p1 + p2) is equal to :
A six faced die is biased such that3 × P (a prime number) = 6 × P (a composite number) = 2 × P (1).Let X be a random variable that counts the number of times one gets a perfect square on somethrows of this die. If the die is thrown twice, then the mean of X is :