\(\begin{array}{l}\because f(x) \text{is continuous at }x = 4 \Rightarrow f\left(4^-\right) = f\left(4^+\right)\end{array}\)
\(\begin{array}{l}\Rightarrow 16 + 4b = \int_{0}^{4}(5-|t-3|)dt\end{array}\)
\(\begin{array}{l}=\int_{0}^{3}(2+t)dt+\int_{3}^{4}(8-t)dt\end{array}\)
\(\begin{array}{l}=2t +\left. \frac{t^2}{2}\right)_0^3+8t – \left. \frac{t^2}{3}\right]_{3}^4\end{array}\)
\(\begin{array}{l}=6+\frac{9}{2}-0 + (32-8)-\left(24-\frac{9}{2}\right)\end{array}\)
16 + 4b = 15
\(\begin{array}{l}\Rightarrow b = \frac{-1}{4}\end{array}\)
\(\begin{array}{l}\Rightarrow f(x) = \left\{\begin{matrix}\int_{0}^{x}5-|t-3|dt & x>4 \\x^2-\frac{x}{4} & x\le 4 \\\end{matrix}\right.\end{array}\)
\(\begin{array}{l}\Rightarrow f'(x) = \left\{\begin{matrix}5-|x-3| & x>4 \\2x-\frac{1}{4} & x\le 4 \\\end{matrix}\right.\end{array}\)
\(\begin{array}{l}\Rightarrow f'(x) = \left\{\begin{matrix}8-x & x>4 \\2x-\frac{1}{4} & x\le 4 \\\end{matrix}\right.\end{array}\)
\(\begin{array}{l}f'(x)<0 \Rightarrow x \in \left(-\infty, \frac{1}{8}\right)\cup (8, \infty)\end{array}\)
\(\begin{array}{l}f'(3)+f'(5)=6 -\frac{1}{4}=\frac{35}{4}\end{array}\)
\(\begin{array}{l}f'(x) = 0 \Rightarrow x = \frac{1}{8} \text{ have local minima}\end{array}\)
\(\begin{array}{l}\therefore \left(C\right) \text{is only incorrect option}\end{array}\)
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
A function is said to be one to one function when f: A → B is One to One if for each element of A there is a distinct element of B.
A function which maps two or more elements of A to the same element of set B is said to be many to one function. Two or more elements of A have the same image in B.
If there exists a function for which every element of set B there is (are) pre-image(s) in set A, it is Onto Function.
A function, f is One – One and Onto or Bijective if the function f is both One to One and Onto function.
Read More: Types of Functions