Let \( A(-2, -1) \), \( B(1, 0) \), \( C(\alpha, \beta) \), and \( D(\gamma, \delta) \) be the vertices of a parallelogram \( ABCD \). If the point \( C \) lies on \( 2x - y = 5 \) and the point \( D \) lies on \( 3x - 2y = 6 \), then the value of \( | \alpha + \beta + \gamma + \delta | \) is equal to\( \_\_\_\_\_\).