Let \( S = (-1, \infty) \) and \( f : S \rightarrow \mathbb{R} \) be defined as \[ f(x) = \int_{-1}^{x} (e^t - 1)^{11} (2t - 1)^5 (t - 2)^7 (t - 3)^{12} (2t - 10)^{61} \, dt \] Let \( p = \) Sum of squares of the values of \( x \), where \( f(x) \) attains local maxima on \( S \). And \( q = \) Sum of the values of \( x \), where \( f(x) \) attains local minima on \( S \). Then, the value of \( p^2 + 2q \) is ______