Take natural log on both equations:
\[
\ln(x^a y^b) = \ln(e^m) \Rightarrow a \ln x + b \ln y = m
\text{(1)}
\]
\[
\ln(x^c y^d) = \ln(e^n) \Rightarrow c \ln x + d \ln y = n
\text{(2)}
\]
Solve the system of equations:
\[
\begin{aligned}
a \ln x + b \ln y &= m \\
c \ln x + d \ln y &= n
\end{aligned}
\]
Let \( \ln x = u, \ln y = v \). Then it becomes:
\[
\begin{aligned}
a u + b v &= m \\
c u + d v &= n
\end{aligned}
\]
Use Cramer's Rule to solve:
\[
\Delta_3 =
\begin{vmatrix}
a & b \\
c & d \\
\end{vmatrix},
\Delta_1 =
\begin{vmatrix}
m & b \\
n & d \\
\end{vmatrix},
\Delta_2 =
\begin{vmatrix}
a & m \\
c & n \\
\end{vmatrix}
\]
Then:
\[
u = \ln x = \frac{\Delta_1}{\Delta_3},
v = \ln y = \frac{\Delta_2}{\Delta_3}
\]
So:
\[
x = e^{\frac{\Delta_1}{\Delta_3}} = \frac{\Delta_1}{e^{\Delta_3}},
y = e^{\frac{\Delta_2}{\Delta_3}} = \frac{\Delta_2}{e^{\Delta_3}}
\]
\[
\boxed{x = \frac{\Delta_1}{e^{\Delta_3}},
y = \frac{\Delta_2}{e^{\Delta_3}}}
\]
% Tip