2.5 x 10$^{-4}$
Step 1: Understand Darcy’s law
Darcy’s velocity (q) = Permeability ($k$) $\times$ Hydraulic gradient ($i$).
Given: $k = 2 \times 10^{-4}$ cm/s, $i = 0.5$.
Step 2: Calculate Darcy’s velocity
$q = k \times i = 2 \times 10^{-4} \times 0.5 = 1 \times 10^{-4}$ cm/s.
Step 3: Relate to seepage velocity
Seepage velocity ($v_s$) = $\frac{\text{Darcy’s velocity}}{\text{Porosity}}$.
Given porosity ($n$) = 0.4.
$v_s = \frac{1 \times 10^{-4}}{0.4} = 2.5 \times 10^{-4}$ cm/s.
For a two-port network to be reciprocal, it is necessary that ……..