The molar heat capacity of the gas at constant pressure is: \[ C_{p,m} = \frac{5}{2} R \]
We are asked to find the value of \( 2 \log V_3 \), where \( V_3 \) is the volume at state \( C \). The process involves two parts: \( A \to B \) (adiabatic) and \( B \to C \) (isobaric). We can relate the total heat absorbed during these processes using the formula for heat in an ideal gas:
The total heat absorbed is \( R T_2 \ln 10 \), so we need to use this information to find the relationship between \( V_3 \) and the other variables in the process. The calculations will show that the value of \( 2 \log V_3 \) equals 7.
The value of \( 2 \log V_3 \) is \( \boxed{7} \).
Consider the following statements:
(A) Availability is generally conserved.
(B) Availability can neither be negative nor positive.
(C) Availability is the maximum theoretical work obtainable.
(D) Availability can be destroyed in irreversibility's.
List-I (Details of the processes of the cycle) | List-II (Name of the cycle) |
---|---|
(A) Two adiabatic, one isobaric and two isochoric | (I) Diesel |
(B) Two adiabatic and two isochoric | (II) Carnot |
(C) Two adiabatic, one isobaric and one isochoric | (III) Dual |
(D) Two adiabatics and two isothermals | (IV) Otto |
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Thermodynamics in physics is a branch that deals with heat, work and temperature, and their relation to energy, radiation and physical properties of matter.
A thermodynamic system is a specific portion of matter with a definite boundary on which our attention is focused. The system boundary may be real or imaginary, fixed or deformable.
There are three types of systems:
A system undergoes a thermodynamic process when there is some energetic change within the system that is associated with changes in pressure, volume and internal energy.
There are four types of thermodynamic process that have their unique properties, and they are:
The Zeroth law of thermodynamics states that if two bodies are individually in equilibrium with a separate third body, then the first two bodies are also in thermal equilibrium with each other.
The First law of thermodynamics is a version of the law of conservation of energy, adapted for thermodynamic processes, distinguishing three kinds of transfer of energy, as heat, as thermodynamic work, and as energy associated with matter transfer, and relating them to a function of a body's state, called internal energy.
The Second law of thermodynamics is a physical law of thermodynamics about heat and loss in its conversion.
Third law of thermodynamics states, regarding the properties of closed systems in thermodynamic equilibrium: The entropy of a system approaches a constant value when its temperature approaches absolute zero.