In the given cycle ABCDA, the heat required for an ideal monoatomic gas will be:
Three identical rods are joined as shown in the figure. The left and right ends are kept at \( 0^\circ C \) and \( 90^\circ C \) as shown in the figure. The temperature \( \theta \) at the junction of the rods is:
List-I | List-II | ||
P | The value of \(I1\) in Ampere is | I | \(0\) |
Q | The value of I2 in Ampere is | II | \(2\) |
R | The value of \(\omega_0\) in kilo-radians/s is | III | \(4\) |
S | The value of \(V_0\) in Volt is | IV | \(20\) |
200 |
Specific heat of a solid or liquid is the amount of heat that raises the temperature of a unit mass of the solid through 1°C.
The Molar specific heat of a solid or liquid of a material is the heat that you provide to raise the temperature of one mole of solid or liquid through 1K or 1°C.
The volume of solid remains constant when heated through a small range of temperature. This is known as specific heat at a constant volume. It is denoted as CV.
The pressure of solid remains constant when heated through a small range of temperature. This is known as specific heat at constant pressure which can be denoted as CP.