List-I | List-II | ||
P | Work done in the complete cyclic process | I | \(ℛT_0 − 4ℛT_0 ln 2\) |
Q | Change in the internal energy of the gas in the process JK | II | \(0\) |
R | Heat given to the gas in the process KL | III | \(3ℛT_0\) |
S | Change in the internal energy of the gas in the process MJ | IV | \(−2ℛT_0 ln 2\) |
\[−3ℛT_0 ln 2\] |
P → 1; Q → 3; R → 5; S → 4
To solve this problem, we need to analyze each process in the cyclic path J→K→L→M→J of the ideal gas, using the ideal gas law and the properties of different thermodynamic processes.
1. Work done in the complete cyclic process (P): In a complete cycle of a thermodynamic process for an ideal gas, the net work done is equivalent to the area enclosed by the cycle on the P-T diagram. For a monatomic ideal gas in a cyclic process:
\(W = -\int PdV\)
For this particular cycle, it matches with:
\(P \rightarrow \text{List-II 4: } ℛT_0 − 4ℛT_0 ln 2\)
2. Change in the internal energy in the process JK (Q): As the gas goes from J to K, it remains on a constant volume as depicted in the P-T diagram (isovolumetric process). For such processes, the internal energy change, which is a function of temperature for an ideal gas:
\(ΔU = 0\) because there is no change in temperature during this isovolumetric process.
Thus, this corresponds to:
\(Q \rightarrow \text{List-II 3: } 0\)
3. Heat given to the gas in the process KL (R): A process KL on the P-T diagram where pressure is constant (isobaric process) allows the heat exchanged to be calculated with:
\(Q = nC_pΔT\)
where \(C_p\) for a monatomic gas is \(\frac{5}{2}R\), and \(\Delta T\) can be identified from the process specifics.
Therefore, it corresponds to:
\(R \rightarrow \text{List-II 5: } 3ℛT_0\)
4. Change in the internal energy in the process MJ (S): As the gas undergoes a different particular process MJ, the change in internal energy again follows the temperature change as:
\(ΔU = \frac{3}{2}nRΔT\)
This is because the specific internal energy change aligns with the given expression:
\(S \rightarrow \text{List-II 2: } −2ℛT_0 ln 2\)
In conclusion, these matchings imply the correct option is:
P → 4; Q → 3; R → 5; S → 2
P | → | 4 |
Q | → | 3 |
R | → | 5 |
S | → | 2 |
Match List - I with List - II.
Consider the following statements:
(A) Availability is generally conserved.
(B) Availability can neither be negative nor positive.
(C) Availability is the maximum theoretical work obtainable.
(D) Availability can be destroyed in irreversibility's.
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is: