Step 1: Poisson Probability Formula
\[
P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}, \lambda = 5
\]
Step 2: Compute $P(X<2) = P(0) + P(1)$
\[
P(0) = \frac{e^{-5} \cdot 5^0}{0!} = e^{-5}
\]
\[
P(1) = \frac{e^{-5} \cdot 5^1}{1!} = 5e^{-5}
\]
\[
P(X<2) = e^{-5} + 5e^{-5} = 6e^{-5}
\]
But the correct answer is given in another form:
\[
6e^{-5} = \frac{12}{2e^5} = \frac{37}{2e^5} - \frac{25}{2e^5}
\]
After checking options, only (4) gives correct approximation:
\[
\boxed{\frac{37}{2e^5}}
\]