This problem requires identifying complexes with an even number of electrons in their \(t_{2g}\) orbitals. Let's evaluate each given complex:
From this analysis, the complexes with an even number of electrons in \(t_{2g}\) orbitals are \([\text{Fe(H}_2\text{O)}_6]^{2+}, [\text{Co(H}_2\text{O)}_6]^{3+}, and [\text{Cu(H}_2\text{O)}_6]^{2+}\). Therefore, there are 3 such complexes.
To determine the number of complexes with an even number of electrons in $t_{2g}$ orbitals, we calculate the electronic configuration of the central metal ion in each complex:
$[\text{Fe}(\text{H}_2\text{O})_6]^{2+}$: Fe$^{2+}$ has $(3d^6)$ configuration. In an octahedral field:
\[t_{2g}^4e_g^2 \quad (4 \, \text{electrons in } t_{2g})\]
Even number of electrons in $t_{2g}$.
$[\text{Co}(\text{H}_2\text{O})_6]^{2+}$: Co$^{2+}$ has $(3d^7)$ configuration. In an octahedral field:
\[t_{2g}^5e_g^2 \quad (5 \, \text{electrons in } t_{2g})\]
Odd number of electrons in $t_{2g}$.
$[\text{Co}(\text{H}_2\text{O})_6]^{3+}$: Co$^{3+}$ has $(3d^6)$ configuration. In an octahedral field:
\[t_{2g}^6e_g^0 \quad (6 \, \text{electrons in } t_{2g})\]
Even number of electrons in $t_{2g}$.
$[\text{Cu}(\text{H}_2\text{O})_6]^{2+}$: Cu$^{2+}$ has $(3d^9)$ configuration. In an octahedral field:
\[t_{2g}^6e_g^3 \quad (6 \, \text{electrons in } t_{2g})\]
Even number of electrons in $t_{2g}$.
$[\text{Cr}(\text{H}_2\text{O})_6]^{2+}$: Cr$^{2+}$ has $(3d^4)$ configuration. In an octahedral field:
\[t_{2g}^3e_g^1 \quad (3 \, \text{electrons in } t_{2g})\]
Odd number of electrons in $t_{2g}$.
Complexes with even number of electrons in $t_{2g}$ orbitals are:
\[[\text{Fe}(\text{H}_2\text{O})_6]^{2+}, \, [\text{Co}(\text{H}_2\text{O})_6]^{3+}, \, [\text{Cu}(\text{H}_2\text{O})_6]^{2+}\]
Final Answer: 3 complexes.

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
