To determine the number of complexes with an even number of electrons in $t_{2g}$ orbitals, we calculate the electronic configuration of the central metal ion in each complex:
$[\text{Fe}(\text{H}_2\text{O})_6]^{2+}$: Fe$^{2+}$ has $(3d^6)$ configuration. In an octahedral field:
\[t_{2g}^4e_g^2 \quad (4 \, \text{electrons in } t_{2g})\]
Even number of electrons in $t_{2g}$.
$[\text{Co}(\text{H}_2\text{O})_6]^{2+}$: Co$^{2+}$ has $(3d^7)$ configuration. In an octahedral field:
\[t_{2g}^5e_g^2 \quad (5 \, \text{electrons in } t_{2g})\]
Odd number of electrons in $t_{2g}$.
$[\text{Co}(\text{H}_2\text{O})_6]^{3+}$: Co$^{3+}$ has $(3d^6)$ configuration. In an octahedral field:
\[t_{2g}^6e_g^0 \quad (6 \, \text{electrons in } t_{2g})\]
Even number of electrons in $t_{2g}$.
$[\text{Cu}(\text{H}_2\text{O})_6]^{2+}$: Cu$^{2+}$ has $(3d^9)$ configuration. In an octahedral field:
\[t_{2g}^6e_g^3 \quad (6 \, \text{electrons in } t_{2g})\]
Even number of electrons in $t_{2g}$.
$[\text{Cr}(\text{H}_2\text{O})_6]^{2+}$: Cr$^{2+}$ has $(3d^4)$ configuration. In an octahedral field:
\[t_{2g}^3e_g^1 \quad (3 \, \text{electrons in } t_{2g})\]
Odd number of electrons in $t_{2g}$.
Complexes with even number of electrons in $t_{2g}$ orbitals are:
\[[\text{Fe}(\text{H}_2\text{O})_6]^{2+}, \, [\text{Co}(\text{H}_2\text{O})_6]^{3+}, \, [\text{Cu}(\text{H}_2\text{O})_6]^{2+}\]
Final Answer: 3 complexes.
Match List I with List II:
List I (Ion) | List II (Shape) |
---|---|
A. ICl2- | I. V-shape |
B. NH2- | II. Linear |
C. NH4+ | III. Tetrahedral |
D. [PtCl4]- | IV. Square planar |
Choose the correct answer from the options given below:
Arrange the increasing order of charges (molar conductivity) of the compounds used in Werner coordination theory