This problem requires identifying complexes with an even number of electrons in their \(t_{2g}\) orbitals. Let's evaluate each given complex:
From this analysis, the complexes with an even number of electrons in \(t_{2g}\) orbitals are \([\text{Fe(H}_2\text{O)}_6]^{2+}, [\text{Co(H}_2\text{O)}_6]^{3+}, and [\text{Cu(H}_2\text{O)}_6]^{2+}\). Therefore, there are 3 such complexes.
To determine the number of complexes with an even number of electrons in $t_{2g}$ orbitals, we calculate the electronic configuration of the central metal ion in each complex:
$[\text{Fe}(\text{H}_2\text{O})_6]^{2+}$: Fe$^{2+}$ has $(3d^6)$ configuration. In an octahedral field:
\[t_{2g}^4e_g^2 \quad (4 \, \text{electrons in } t_{2g})\]
Even number of electrons in $t_{2g}$.
$[\text{Co}(\text{H}_2\text{O})_6]^{2+}$: Co$^{2+}$ has $(3d^7)$ configuration. In an octahedral field:
\[t_{2g}^5e_g^2 \quad (5 \, \text{electrons in } t_{2g})\]
Odd number of electrons in $t_{2g}$.
$[\text{Co}(\text{H}_2\text{O})_6]^{3+}$: Co$^{3+}$ has $(3d^6)$ configuration. In an octahedral field:
\[t_{2g}^6e_g^0 \quad (6 \, \text{electrons in } t_{2g})\]
Even number of electrons in $t_{2g}$.
$[\text{Cu}(\text{H}_2\text{O})_6]^{2+}$: Cu$^{2+}$ has $(3d^9)$ configuration. In an octahedral field:
\[t_{2g}^6e_g^3 \quad (6 \, \text{electrons in } t_{2g})\]
Even number of electrons in $t_{2g}$.
$[\text{Cr}(\text{H}_2\text{O})_6]^{2+}$: Cr$^{2+}$ has $(3d^4)$ configuration. In an octahedral field:
\[t_{2g}^3e_g^1 \quad (3 \, \text{electrons in } t_{2g})\]
Odd number of electrons in $t_{2g}$.
Complexes with even number of electrons in $t_{2g}$ orbitals are:
\[[\text{Fe}(\text{H}_2\text{O})_6]^{2+}, \, [\text{Co}(\text{H}_2\text{O})_6]^{3+}, \, [\text{Cu}(\text{H}_2\text{O})_6]^{2+}\]
Final Answer: 3 complexes.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 