>
Exams
>
Mathematics
>
Limits
>
n n 4 2n 3 n 2 3n 4 n 3 n 2 is equal to
Question:
\(\lim\limits_{n\rightarrow \infin}\frac{\sum(n^4-2n^3+n^2)}{\sum ((3n)^4+n^3-n^2)}\)
is equal to
JEE Main
Updated On:
Apr 8, 2024
\(\frac{1}{81}\)
\(\frac{1}{72}\)
\(\frac{1}{57}\)
\(\frac{1}{93}\)
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
The Correct answer is option is (A) :
\(\frac{1}{81}\)
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Limits
Match List-I with List-II:
\[\begin{array}{|c|c|} \hline \textbf{List-I} & \textbf{List-II} \\ \hline \text{(A)}\ \lim_{x\to 0}(1+2x)^{\frac{1}{x}} & \text{(I)}\ e^{6} \\ \hline \text{(B)}\ \lim_{x\to \infty}\left(1+\frac{1}{x}\right)^{x} & \text{(II)}\ e^{2} \\ \hline \text{(C)}\ \lim_{x\to 0}(1+5x)^{\frac{2}{x}} & \text{(III)}\ e \\ \hline \text{(D)}\ \lim_{x\to \infty}\left(1+\frac{3}{x}\right)^{2x} & \text{(IV)}\ e^{5} \\ \hline \end{array}\] Choose the correct answer from the options given below:
CUET (PG) - 2025
Computer Science
Limits
View Solution
The value of
$\displaystyle \lim_{x \to \infty}\left(1+\frac{2}{3x}\right)^{x}$
is:
CUET (PG) - 2025
Computer Science
Limits
View Solution
Evaluate:
\[ \lim_{x \to 0} \frac{\sin 3x - 3 \sin x}{x^3} \]
BITSAT - 2025
Mathematics
Limits
View Solution
Given below are two statements:
Statement I:
$\lim_{x \to 0} \left( \frac{\tan^{-1} x + \log_e \sqrt{\frac{1+x}{1-x}} - 2x}{x^5} \right) = \frac{2}{5}$
Statement II:
$\lim_{x \to 1} \left( \frac{2}{x^{1-x}} \right) = \frac{1}{e^2}$
In the light of the above statements, choose the correct answer from the options given below
JEE Main - 2025
Mathematics
Limits
View Solution
For $ t>-1 $, let $ \alpha_t $ and $ \beta_t $ be the roots of the equation
$ \left( (t + 2)^{\frac{1}{7}} - 1 \right)x^2 + \left( (t + 2)^{\frac{1}{6}} - 1 \right)x + \left( (t + 2)^{\frac{1}{21}} - 1 \right) = 0. $
If $ \lim_{t \to 1^+} \alpha_t = a $ and $ \lim_{t \to 1^+} \beta_t = b $, then $ 72(a + b)^2 $ is equal to:
JEE Main - 2025
Mathematics
Limits
View Solution
View More Questions
Questions Asked in JEE Main exam
A force of 49 N acts tangentially at the highest point of a sphere (solid of mass 20 kg) kept on a rough horizontal plane. If the sphere rolls without slipping, then the acceleration of the center of the sphere is:
JEE Main - 2025
Quantum Mechanics
View Solution
Total number of non-bonded electrons present in \( \text{NO}_2 \); ion based on Lewis theory is:
JEE Main - 2025
Chemical bonding and molecular structure
View Solution
Match List - I with List - II.
JEE Main - 2025
Thermodynamics
View Solution
The variance of the numbers 8, 21, 34, 47, \dots, 320, is:
JEE Main - 2025
Arithmetic Progression and Variance
View Solution
The value of \( (\sin 70^\circ)(\cot 10^\circ \cot 70^\circ - 1) \) is:
JEE Main - 2025
Trigonometric Identities
View Solution
View More Questions