Given: - Frequency of light: \( \nu = 6 \times 10^{14} \, \text{Hz} \) - Power emitted by the source: \( P = 2 \times 10^{-3} \, \text{W} \) - Planck's constant: \( h = 6.63 \times 10^{-34} \, \text{Js} \)
The energy \( E \) of a photon is given by:
\[ E = h\nu \]
Substituting the given values:
\[ E = 6.63 \times 10^{-34} \times 6 \times 10^{14} \, \text{J} \] \[ E = 3.978 \times 10^{-19} \, \text{J} \]
Rounding off:
\[ E \approx 4 \times 10^{-19} \, \text{J} \]
The number of photons emitted per second (\( n \)) is given by:
\[ n = \frac{P}{E} \]
Substituting the given values:
\[ n = \frac{2 \times 10^{-3}}{4 \times 10^{-19}} \] \[ n = \frac{2}{4} \times 10^{16} \] \[ n = 0.5 \times 10^{16} \] \[ n = 5 \times 10^{15} \]
Conclusion: The number of photons emitted per second by the source is \( 5 \times 10^{15} \).
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Electromagnetic waves carry energy but not momentum.
Reason (R): Mass of a photon is zero. In the light of the above statements.
choose the most appropriate answer from the options given below:
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below:
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below: