Match List-I with List-II
| List-I (Matrix) | List-II (Inverse of the Matrix) |
|---|---|
| (A) \(\begin{bmatrix} 1 & 7 \\ 4 & -2 \end{bmatrix}\) | (I) \(\begin{bmatrix} \tfrac{2}{15} & \tfrac{1}{10} \\[6pt] -\tfrac{1}{15} & \tfrac{1}{5} \end{bmatrix}\) |
| (B) \(\begin{bmatrix} 6 & -3 \\ 2 & 4 \end{bmatrix}\) | (II) \(\begin{bmatrix} \tfrac{1}{5} & -\tfrac{2}{15} \\[6pt] -\tfrac{1}{10} & \tfrac{7}{30} \end{bmatrix}\) |
| (C) \(\begin{bmatrix} 5 & 2 \\ -5 & 4 \end{bmatrix}\) | (III) \(\begin{bmatrix} \tfrac{1}{15} & \tfrac{7}{30} \\[6pt] \tfrac{2}{15} & -\tfrac{1}{30} \end{bmatrix}\) |
| (D) \(\begin{bmatrix} 7 & 4 \\ 3 & 6 \end{bmatrix}\) | (IV) \(\begin{bmatrix} \tfrac{2}{15} & -\tfrac{1}{15} \\[6pt] \tfrac{1}{6} & \tfrac{1}{6} \end{bmatrix}\) |
Step 1: Understanding the Concept
The task is to find the inverse of each matrix in List-I and match it with the correct inverse from List-II.
Step 2: Key Formula or Approach
For a \(2\times2\) matrix \( M=\begin{bmatrix} a & b \\ c & d \end{bmatrix} \), the inverse is: \[ M^{-1}=\frac{1}{\det(M)}\,\mathrm{adj}(M) =\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}. \]
Step 3: Detailed Explanation
(A) For \(A=\begin{bmatrix} 1 & 7 \\ 4 & -2 \end{bmatrix}\):
\(\det(A)=(1)(-2)-(7)(4)=-2-28=-30\).
\[ A^{-1}=\frac{1}{-30}\begin{bmatrix}-2 & -7 \\ -4 & 1\end{bmatrix} =\begin{bmatrix}\tfrac{1}{15} & \tfrac{7}{30} \\[4pt] \tfrac{2}{15} & -\tfrac{1}{30}\end{bmatrix}. \] This matches (III).
(B) For \(B=\begin{bmatrix} 6 & -3 \\ 2 & 4 \end{bmatrix}\):
\(\det(B)=(6)(4)-(-3)(2)=24+6=30\).
\[ B^{-1}=\frac{1}{30}\begin{bmatrix}4 & 3 \\ -2 & 6\end{bmatrix} =\begin{bmatrix}\tfrac{2}{15} & \tfrac{1}{10} \\[4pt] -\tfrac{1}{15} & \tfrac{1}{5}\end{bmatrix}. \] This matches (I).
(C) For \(C=\begin{bmatrix} 5 & 2 \\ -5 & 4 \end{bmatrix}\):
\(\det(C)=(5)(4)-(2)(-5)=20+10=30\).
\[ C^{-1}=\frac{1}{30}\begin{bmatrix}4 & -2 \\ 5 & 5\end{bmatrix} =\begin{bmatrix}\tfrac{2}{15} & -\tfrac{1}{15} \\[4pt] \tfrac{1}{6} & \tfrac{1}{6}\end{bmatrix}. \] This matches (IV).
(D) For \(D=\begin{bmatrix} 7 & 4 \\ 3 & 6 \end{bmatrix}\):
\(\det(D)=(7)(6)-(4)(3)=42-12=30\).
\[ D^{-1}=\frac{1}{30}\begin{bmatrix}6 & -4 \\ -3 & 7\end{bmatrix} =\begin{bmatrix}\tfrac{1}{5} & -\tfrac{2}{15} \\[4pt] -\tfrac{1}{10} & \tfrac{7}{30}\end{bmatrix}. \] This matches (II).
Step 4: Final Answer
\((A \to \text{III}),\ (B \to \text{I}),\ (C \to \text{IV}),\ (D \to \text{II})\) → Option (C).
If \( A \), \( B \), and \( \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) \) are non-singular matrices of the same order, then the inverse of \[ A \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) B \] is equal to:
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to: