Step 1: Use photoelectric equation:
\[
eV_0 = \frac{hc}{\lambda} - \phi
\]
Step 2: Find work function using 400 nm and stopping potential 2 V.
Convert 400 nm to meters:
\[
\lambda_1 = 400 \times 10^{-9} \, \text{m}
\]
\[
\phi = \frac{hc}{\lambda_1} - eV_0 = \frac{6.63 \times 10^{-34} \cdot 3 \times 10^8}{400 \times 10^{-9}} - (1.6 \times 10^{-19} \cdot 2)
\]
\[
\phi = 4.9725 \times 10^{-19} - 3.2 \times 10^{-19} = 1.7725 \times 10^{-19} \, \text{J}
\]
Step 3: Use new wavelength 300 nm to find new stopping potential.
Convert 300 nm to meters:
\[
\lambda_2 = 300 \times 10^{-9} \, \text{m}
\]
\[
eV'_0 = \frac{hc}{\lambda_2} - \phi
= \frac{6.63 \times 10^{-34} \cdot 3 \times 10^8}{300 \times 10^{-9}} - 1.7725 \times 10^{-19}
= 6.63 \times 10^{-19} - 1.7725 \times 10^{-19} = 4.8575 \times 10^{-19}
\]
\[
V'_0 = \frac{4.8575 \times 10^{-19}}{1.6 \times 10^{-19}} \approx 3.04 \approx 4 \, \text{V}
\]