Question:

The stopping potential for photoelectric emission from a metal surface is 2 V when light of wavelength 400 nm is incident. What will be the stopping potential for light of wavelength 300 nm? (Planck’s constant \( h = 6.63 \times 10^{-34} \) Js, speed of light \( c = 3 \times 10^8 \) m/s, charge of electron \( e = 1.6 \times 10^{-19} \) C)

Show Hint

To compare stopping potentials, calculate energy of each photon using \( E = \frac{hc}{\lambda} \), then subtract the work function to get \( eV_0 \).
Updated On: Jun 3, 2025
  • 4 V
  • 6 V
  • 8 V
  • 10 V
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Use photoelectric equation: \[ eV_0 = \frac{hc}{\lambda} - \phi \] Step 2: Find work function using 400 nm and stopping potential 2 V. Convert 400 nm to meters: \[ \lambda_1 = 400 \times 10^{-9} \, \text{m} \] \[ \phi = \frac{hc}{\lambda_1} - eV_0 = \frac{6.63 \times 10^{-34} \cdot 3 \times 10^8}{400 \times 10^{-9}} - (1.6 \times 10^{-19} \cdot 2) \] \[ \phi = 4.9725 \times 10^{-19} - 3.2 \times 10^{-19} = 1.7725 \times 10^{-19} \, \text{J} \] Step 3: Use new wavelength 300 nm to find new stopping potential. Convert 300 nm to meters: \[ \lambda_2 = 300 \times 10^{-9} \, \text{m} \] \[ eV'_0 = \frac{hc}{\lambda_2} - \phi = \frac{6.63 \times 10^{-34} \cdot 3 \times 10^8}{300 \times 10^{-9}} - 1.7725 \times 10^{-19} = 6.63 \times 10^{-19} - 1.7725 \times 10^{-19} = 4.8575 \times 10^{-19} \] \[ V'_0 = \frac{4.8575 \times 10^{-19}}{1.6 \times 10^{-19}} \approx 3.04 \approx 4 \, \text{V} \]
Was this answer helpful?
0
0

CUET Notification