The problem asks to match the laws of electromagnetism (List-I) with their corresponding equations (List-II). These laws are derived from Maxwell’s equations.
Gauss’s Law of Electrostatics states that the total electric flux through a closed surface is equal to the charge enclosed divided by the permittivity of free space. The corresponding equation is:
\[ \oint \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\epsilon_0} \int \rho dV. \]
This matches D – I.
Faraday’s Law of Electromagnetic Induction states that the electromotive force induced in a closed loop is equal to the negative rate of change of the magnetic flux through the loop. The corresponding equation is:
\[ \oint \mathbf{E} \cdot d\mathbf{l} = - \frac{d}{dt} \int \mathbf{B} \cdot d\mathbf{a}. \]
This matches B – III.
Ampere’s Law (with Maxwell’s correction) relates the line integral of the magnetic field around a closed loop to the current passing through the loop and the displacement current. For steady currents, the corresponding equation is:
\[ \oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I. \]
This matches C – IV.
Gauss’s Law for Magnetostatics states that the net magnetic flux through a closed surface is zero, indicating there are no magnetic monopoles. The corresponding equation is:
\[ \oint \mathbf{B} \cdot d\mathbf{a} = 0. \]
This matches A – II.
Final Matching:
A – II, B – III, C – IV, D – I
Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
Current passing through a wire as function of time is given as $I(t)=0.02 \mathrm{t}+0.01 \mathrm{~A}$. The charge that will flow through the wire from $t=1 \mathrm{~s}$ to $\mathrm{t}=2 \mathrm{~s}$ is:
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below:
Due to presence of an em-wave whose electric component is given by \( E = 100 \sin(\omega t - kx) \, NC^{-1} \), a cylinder of length 200 cm holds certain amount of em-energy inside it. If another cylinder of same length but half diameter than previous one holds same amount of em-energy, the magnitude of the electric field of the corresponding em-wave should be modified as: