Match List - I with List - II.

Choose the correct answer from the options given below :
( A ) − ( I I ) , ( B ) − ( I ) , ( C ) − ( I I I ) , ( D ) − ( I V )
( A ) − ( I ) , ( B ) − ( I I ) , ( C ) − ( I V ) , ( D ) − ( I I I )
( A ) − ( I I ) , ( B ) − ( I ) , ( C ) − ( I V ) , ( D ) − ( I I I )
( A ) − ( I I ) , ( B ) − ( I I I ) , ( C ) − ( I ) , ( D ) − ( I V )
The problem requires matching partial derivatives of thermodynamic quantities with their respective physical interpretations or symbols. Let’s examine each of the given derivatives and match them accordingly:
Therefore, the correct match is: ( A ) − ( I I ) , ( B ) − ( I ) , ( C ) − ( I V ) , ( D ) − ( I I I ).
To solve this problem, we need to correctly match the items from List - I with List - II by analyzing the partial derivatives related to thermodynamic quantities provided in the problem. The correct pairing is determined by the fundamental thermodynamic identities these partial derivatives represent.
The given options and the correct answer pair these items as follows:
By understanding and evaluating the fundamental principles each pair represents, we confirm the correct answer as: (A) − (II), (B) − (I), (C) − (IV), (D) − (III).
This matching aligns with the conventions and relationships found in physical chemistry, particularly in the study of thermodynamics.
An ideal gas has undergone through the cyclic process as shown in the figure. Work done by the gas in the entire cycle is _____ $ \times 10^{-1} $ J. (Take $ \pi = 3.14 $) 
The internal energy of air in $ 4 \, \text{m} \times 4 \, \text{m} \times 3 \, \text{m} $ sized room at 1 atmospheric pressure will be $ \times 10^6 \, \text{J} $. (Consider air as a diatomic molecule)

