An ideal gas has undergone through the cyclic process as shown in the figure. Work done by the gas in the entire cycle is _____ $ \times 10^{-1} $ J. (Take $ \pi = 3.14 $) 
The graph is a circle in the PV diagram, and for a cyclic process, the work done by the gas is equal to the area enclosed by the cycle.
Assuming both axes are scaled equally, the radius \( R = 100 \) \[ \text{Area} = \pi R^2 = 3.14 \times 100^2 = 3.14 \times 10^4 \] Convert units: \[ 1\, \text{kPa} \cdot \text{cm}^3 = 10^{-2} \, \text{J} \Rightarrow \text{Work done} = 3.14 \times 10^4 \times 10^{-2} = 314 \, \text{J} \]
Work done = $31.4 \times 10^{-1}$ J
Given the area of the circle \( W = \frac{\pi}{4} d_1 d_2 \), we can compute the work done as: \[ W = \frac{\pi}{4} (500 - 300) \times 10^3 \times (350 - 150) \times 10^{-6} \] Simplifying: \[ W = 31.4 \, \text{Joule} \] Thus: \[ W = 314 \times 10^{-1} \, \text{Joule} \] \[ \boxed{W = 31.4 \, \text{Joule}} \]

Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
An organic compound (X) with molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ is not readily oxidised. On reduction it gives $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}(\mathrm{Y})\right.$ which reacts with HBr to give a bromide (Z) which is converted to Grignard reagent. This Grignard reagent on reaction with (X) followed by hydrolysis give 2,3-dimethylbutan-2-ol. Compounds (X), (Y) and (Z) respectively are: