An ideal gas has undergone through the cyclic process as shown in the figure. Work done by the gas in the entire cycle is _____ $ \times 10^{-1} $ J. (Take $ \pi = 3.14 $)
The graph is a circle in the PV diagram, and for a cyclic process, the work done by the gas is equal to the area enclosed by the cycle.
Assuming both axes are scaled equally, the radius \( R = 100 \) \[ \text{Area} = \pi R^2 = 3.14 \times 100^2 = 3.14 \times 10^4 \] Convert units: \[ 1\, \text{kPa} \cdot \text{cm}^3 = 10^{-2} \, \text{J} \Rightarrow \text{Work done} = 3.14 \times 10^4 \times 10^{-2} = 314 \, \text{J} \]
Work done = $31.4 \times 10^{-1}$ J
Match the List-I with List-II.
Choose the correct answer from the options given below:
A hot, freshly-sterilised fermentation medium is cooled in a double-pipe heat-exchanger. The medium enters the inner pipe of the exchanger at 95 \(^\circ C\) and leaves the exchanger at 40 \(^\circ C\). Cooling water, flowing counter-currently to the medium, enters the annulus of the exchanger at 15 \(^\circ C\) and leaves the exchanger at 45 \(^\circ C\). The overall heat transfer coefficient is 1350 W m\(^{-2}\) °C\(^{-1}\). The rate of heat transfer per unit area will be _________ W/m². (Round off to the nearest integer)
In a fermentation process, each mole of glucose is converted to biomass (CH\(_1.8\)O\(_0.5\)N\(_0.2\)), with a biomass yield coefficient of 0.4 C-mol/C-mol, according to the unbalanced equation given below. \[ {C}_6{H}_{12}{O}_6 + {NH}_3 + {O}_2 \to {CH}_1.8{O}_0.5{N}_0.2 + {CO}_2 + {H}_2{O} \] The moles of oxygen consumption per mole of glucose consumed during fermentation is _. (Round off to two decimal places)
Let $A$ and $B$ be two distinct points on the line $L: \frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$. Both $A$ and $B$ are at a distance $2\sqrt{17}$ from the foot of perpendicular drawn from the point $(1, 2, 3)$ on the line $L$. If $O$ is the origin, then $\overrightarrow{OA} \cdot \overrightarrow{OB}$ is equal to:
Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying $f(0) = 1$ and $f(2x) - f(x) = x$ for all $x \in \mathbb{R}$. If $\lim_{n \to \infty} \left\{ f(x) - f\left( \frac{x}{2^n} \right) \right\} = G(x)$, then $\sum_{r=1}^{10} G(r^2)$ is equal to
In the expansion of $\left( \sqrt{5} + \frac{1}{\sqrt{5}} \right)^n$, $n \in \mathbb{N}$, if the ratio of $15^{th}$ term from the beginning to the $15^{th}$ term from the end is $\frac{1}{6}$, then the value of $^nC_3$ is:
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
Consider two vectors $\vec{u} = 3\hat{i} - \hat{j}$ and $\vec{v} = 2\hat{i} + \hat{j} - \lambda \hat{k}$, $\lambda>0$. The angle between them is given by $\cos^{-1} \left( \frac{\sqrt{5}}{2\sqrt{7}} \right)$. Let $\vec{v} = \vec{v}_1 + \vec{v}_2$, where $\vec{v}_1$ is parallel to $\vec{u}$ and $\vec{v}_2$ is perpendicular to $\vec{u}$. Then the value $|\vec{v}_1|^2 + |\vec{v}_2|^2$ is equal to