>
Exams
>
Mathematics
>
Limits
>
lim x to 0 left frac 1 x ln left frac sqrt 1 x sq
Question:
$\lim_{x \to 0} \left( \frac{1}{x} \ln \left( \frac{\sqrt{1 + x}}{\sqrt{1 - x}} \right) \right)$ is
WBJEE - 2022
WBJEE
Updated On:
Apr 15, 2025
1/2
0
1
does not exist
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
We are tasked with evaluating the limit: \[ \lim_{x \to 0} \left( \frac{1}{x} \ln \left( \frac{\sqrt{1 + x}}{\sqrt{1 - x}} \right) \right) \]
Step 1: Simplify the expression inside the logarithm
First, we simplify the argument of the logarithmic function: \[ \frac{\sqrt{1 + x}}{\sqrt{1 - x}} = \sqrt{\frac{1 + x}{1 - x}} \] Thus, the given limit becomes: \[ \lim_{x \to 0} \frac{1}{x} \ln \left( \sqrt{\frac{1 + x}{1 - x}} \right) \] Since \( \ln \left( \sqrt{A} \right) = \frac{1}{2} \ln A \), we have: \[ \lim_{x \to 0} \frac{1}{x} \cdot \frac{1}{2} \ln \left( \frac{1 + x}{1 - x} \right) \] This simplifies to: \[ \frac{1}{2} \lim_{x \to 0} \frac{1}{x} \ln \left( \frac{1 + x}{1 - x} \right) \]
Step 2: Expand the logarithmic expression
Now, let's expand the logarithmic function for small \( x \). Using the first-order Taylor expansion for \( \ln(1 + x) \), we get: \[ \ln(1 + x) \approx x \quad \text{and} \quad \ln(1 - x) \approx -x \] Thus, \[ \ln \left( \frac{1 + x}{1 - x} \right) = \ln(1 + x) - \ln(1 - x) \approx x - (-x) = 2x \]
Step 3: Substitute into the limit expression
Now substitute the approximation \( \ln \left( \frac{1 + x}{1 - x} \right) \approx 2x \) into the limit expression: \[ \frac{1}{2} \lim_{x \to 0} \frac{1}{x} \cdot 2x \] This simplifies to: \[ \frac{1}{2} \lim_{x \to 0} 2 = 1 \]
Conclusion
The value of the limit is: \[ \boxed{1} \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Limits
If \( f(x) = \begin{cases} \frac{(e^x - 1) \log(1 + x)}{x^2} & \text{if } x>0 \\ 1 & \text{if } x = 0 \\ \frac{\cos 4x - \cos bx}{\tan^2 x} & \text{if } x<0 \end{cases} \) is continuous at \( x = 0 \), then \(\sqrt{b^2 - a^2} =\)
AP EAPCET - 2025
Mathematics
Limits
View Solution
\(\lim_{x \to 0} \frac{x \tan 2x - 2x \tan x}{(1 - \cos 2x)^2} =\)
AP EAPCET - 2025
Mathematics
Limits
View Solution
Let \([x]\) represent the greatest integer function. If \(\lim_{x \to 0^+} \frac{\cos[x] - \cos(kx - [x])}{x^2} = 5\), then \(k =\)
AP EAPCET - 2025
Mathematics
Limits
View Solution
Evaluate the limit:
\[ \lim_{x \to 0} \frac{(\csc x - \cot x)(e^x - e^{-x})}{\sqrt{3} - \sqrt{2 + \cos x}} \]
AP EAPCET - 2025
Mathematics
Limits
View Solution
If a real valued function \( f(x) = \begin{cases} (1 + \sin x)^{\csc x} & , -\frac{\pi}{2} < x < 0 \\ a & , x = 0 \\ \frac{e^{2/x} + e^{3/x}}{ae^{2/x} + be^{3/x}} & , 0 < x < \frac{\pi}{2} \end{cases} \) is continuous at \(x = 0\), then \(ab = \)
AP EAPCET - 2025
Mathematics
Limits
View Solution
View More Questions
Questions Asked in WBJEE exam
Which logic gate is represented by the following combination of logic gates?
WBJEE - 2025
Logic gates
View Solution
If \( {}^9P_3 + 5 \cdot {}^9P_4 = {}^{10}P_r \), then the value of \( 'r' \) is:
WBJEE - 2025
permutations and combinations
View Solution
If \( 0 \leq a, b \leq 3 \) and the equation \( x^2 + 4 + 3\cos(ax + b) = 2x \) has real solutions, then the value of \( (a + b) \) is:
WBJEE - 2025
Trigonometric Equations
View Solution
Let \( f(\theta) = \begin{vmatrix} 1 & \cos \theta & -1 \\ -\sin \theta & 1 & -\cos \theta \\ -1 & \sin \theta & 1 \end{vmatrix} \). Suppose \( A \) and \( B \) are respectively the maximum and minimum values of \( f(\theta) \). Then \( (A, B) \) is equal to:
WBJEE - 2025
Matrix
View Solution
If \( a, b, c \) are in A.P. and if the equations \( (b - c)x^2 + (c - a)x + (a - b) = 0 \) and \( 2(c + a)x^2 + (b + c)x = 0 \) have a common root, then
WBJEE - 2025
Quadratic Equations
View Solution
View More Questions