lim n→∞ \(\frac{1}{n^3}\) \(\sum_{k=1}^{n} k^{2} =\)
x
\(\frac{x}{2}\)
\(\frac{x}{3}\)
\(\frac{x}{4}\)
To solve the problem, we need to evaluate the limit $\lim_{n\to \infty} \frac{1}{n^3} \sum_{k=1}^n (k^2 x)$.
1. Simplify the Expression:
Since $x$ is a constant, factor it out of the sum:
$\lim_{n\to \infty} \frac{1}{n^3} \sum_{k=1}^n (k^2 x) = \lim_{n\to \infty} \frac{x}{n^3} \sum_{k=1}^n k^2$.
2. Apply the Sum of Squares Formula:
We know $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$.
Substitute this into the limit:
$\lim_{n\to \infty} \frac{x}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \lim_{n\to \infty} \frac{x}{6n^3} \cdot n(2n^2 + 3n + 1)$.
3. Simplify the Limit:
Rewrite the expression:
$\lim_{n\to \infty} \frac{x(2n^3 + 3n^2 + n)}{6n^3} = \lim_{n\to \infty} \frac{x}{6} \left( 2 + \frac{3}{n} + \frac{1}{n^2} \right)$.
As $n \to \infty$, $\frac{3}{n} \to 0$ and $\frac{1}{n^2} \to 0$, so the limit becomes:
$\frac{x}{6} \cdot 2 = \frac{x}{3}$.
Final Answer:
The limit is $\frac{x}{3}$.
Match the following:
Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.
A list of trigonometric equations and their solutions are given below:
Trigonometrical equations | General Solutions |
sin θ = 0 | θ = nπ |
cos θ = 0 | θ = (nπ + π/2) |
cos θ = 0 | θ = nπ |
sin θ = 1 | θ = (2nπ + π/2) = (4n+1) π/2 |
cos θ = 1 | θ = 2nπ |
sin θ = sin α | θ = nπ + (-1)n α, where α ∈ [-π/2, π/2] |
cos θ = cos α | θ = 2nπ ± α, where α ∈ (0, π] |
tan θ = tan α | θ = nπ + α, where α ∈ (-π/2, π/2] |
sin 2θ = sin 2α | θ = nπ ± α |
cos 2θ = cos 2α | θ = nπ ± α |
tan 2θ = tan 2α | θ = nπ ± α |