We are given: \[ \cos^{-1}(x) - \sin^{-1}(x) = \frac{\pi}{6} \] We know that: \[ \cos^{-1}(x) + \sin^{-1}(x) = \frac{\pi}{2} \] Now, substitute this into the given equation: \[ \frac{\pi}{2} - \sin^{-1}(x) - \sin^{-1}(x) = \frac{\pi}{6} \] Simplifying this: \[ 2 \sin^{-1}(x) = \frac{\pi}{3} \] Now, divide both sides by 2: \[ \sin^{-1}(x) = \frac{\pi}{6} \] Now, taking the sine of both sides: \[ x = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \]
Thus, the value of \( x \) is \( \frac{1}{2} \).
The number of solutions of the equation $ \cos 2\theta \cos \left( \frac{\theta}{2} \right) + \cos \left( \frac{5\theta}{2} \right) = 2 \cos^3 \left( \frac{5\theta}{2} \right) $ in the interval \(\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right ]\) is: