We are given: \[ \cos^{-1}(x) - \sin^{-1}(x) = \frac{\pi}{6} \] We know that: \[ \cos^{-1}(x) + \sin^{-1}(x) = \frac{\pi}{2} \] Now, substitute this into the given equation: \[ \frac{\pi}{2} - \sin^{-1}(x) - \sin^{-1}(x) = \frac{\pi}{6} \] Simplifying this: \[ 2 \sin^{-1}(x) = \frac{\pi}{3} \] Now, divide both sides by 2: \[ \sin^{-1}(x) = \frac{\pi}{6} \] Now, taking the sine of both sides: \[ x = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \]
Thus, the value of \( x \) is \( \frac{1}{2} \).
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is: