Given: wavelength of light $=550\, nm$;
width of slit $=22.0 \times 10^{-5}\, cm$
We know that $n \lambda=d \sin \theta$; where $n$ is 2 (for second minima), $\lambda$ is wavelength, $d$ is width of slit.
Therefore, $\sin \theta=\frac{n \lambda}{d}$
$\Rightarrow \theta=\sin ^{-1}\left(\frac{n \lambda}{d}\right)$
Substituting the values, we get
$\theta=\sin ^{-1}\left(\frac{2 \times 550 \times 10^{-9} m }{22.0 \times 10^{-5} cm }\right)$
$=\sin ^{-1}\left(\frac{2 \times 550 \times 10^{-9} m }{22.0 \times 10^{-5} \times 10^{-2} m }\right)$
$\theta=\sin ^{-1}\left(\frac{1}{2}\right)$
$\Rightarrow \theta=\frac{\pi}{6}$
Thus, angular position of second minima from central maximum will be $\pi / 6$.