Given:
Expanding the equation:
\( (\vec{a} + \vec{b} + \vec{c}) \times \vec{c} = 0 \)
\( (\vec{a} + \vec{b}) \times \vec{c} = 0 \)
Let:
\( \vec{c} = \alpha(\vec{a} + \vec{b}) = \alpha(\lambda + 3)\hat{i} + \alpha \lambda \hat{k} \)
Using the condition \( \vec{b} \cdot \vec{c} = -20 \):
\( 3\alpha(\lambda + 3) + 2\alpha = -20 \)
Using the condition \( \vec{a} \cdot \vec{c} = -17 \):
\( \alpha(\lambda(\lambda + 3)) - \alpha = -17 \)
From the first equation:
\( \alpha(3\lambda + 9 + 2) = -20 \Rightarrow \alpha(\lambda^2 + 3\lambda - 1) = -17 \)
Simplify and solve:
\( 17(3\lambda + 11) = 20(\lambda^2 + 3\lambda - 1) \)
This simplifies to:
\( 20\lambda^2 + 9\lambda - 207 = 0 \)
Factoring:
\( \lambda = 3 \quad (\lambda \in \mathbb{Z}) \)
Substitute \( \lambda = 3 \) into \( \alpha \):
\( \alpha = -1, \quad \vec{c} = -6\hat{i} + \hat{k} \)
Now, calculate \( \vec{v} = \vec{c} \times (3\hat{i} + \hat{j} + \hat{k}) \):
\( \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -6 & 0 & 1 \\ 3 & 1 & 1 \end{vmatrix} \)
Expanding the determinant:
\( \vec{v} = \hat{i}(0 \cdot 1 - (-1) \cdot 1) - \hat{j}(-6 \cdot 1 - 3 \cdot (-1)) + \hat{k}(-6 \cdot 1 - 0 \cdot 3) \)
\( \vec{v} = \hat{i}(1) + \hat{j}(-3) - \hat{k}(-6) = \hat{i} + 3\hat{j} - 6\hat{k} \)
Finally, calculate \( |\vec{v}|^2 \):
\( |\vec{v}|^2 = (1)^2 + (3)^2 + (-6)^2 = 1 + 9 + 36 = 46 \)
Match the LIST-I with LIST-II
| LIST-I (Expressions) | LIST-II (Values) | ||
|---|---|---|---|
| A. | \( i^{49} \) | I. | 1 |
| B. | \( i^{38} \) | II. | \(-i\) |
| C. | \( i^{103} \) | III. | \(i\) |
| D. | \( i^{92} \) | IV. | \(-1\) |
Choose the correct answer from the options given below:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: