Given:
Expanding the equation:
\( (\vec{a} + \vec{b} + \vec{c}) \times \vec{c} = 0 \)
\( (\vec{a} + \vec{b}) \times \vec{c} = 0 \)
Let:
\( \vec{c} = \alpha(\vec{a} + \vec{b}) = \alpha(\lambda + 3)\hat{i} + \alpha \lambda \hat{k} \)
Using the condition \( \vec{b} \cdot \vec{c} = -20 \):
\( 3\alpha(\lambda + 3) + 2\alpha = -20 \)
Using the condition \( \vec{a} \cdot \vec{c} = -17 \):
\( \alpha(\lambda(\lambda + 3)) - \alpha = -17 \)
From the first equation:
\( \alpha(3\lambda + 9 + 2) = -20 \Rightarrow \alpha(\lambda^2 + 3\lambda - 1) = -17 \)
Simplify and solve:
\( 17(3\lambda + 11) = 20(\lambda^2 + 3\lambda - 1) \)
This simplifies to:
\( 20\lambda^2 + 9\lambda - 207 = 0 \)
Factoring:
\( \lambda = 3 \quad (\lambda \in \mathbb{Z}) \)
Substitute \( \lambda = 3 \) into \( \alpha \):
\( \alpha = -1, \quad \vec{c} = -6\hat{i} + \hat{k} \)
Now, calculate \( \vec{v} = \vec{c} \times (3\hat{i} + \hat{j} + \hat{k}) \):
\( \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -6 & 0 & 1 \\ 3 & 1 & 1 \end{vmatrix} \)
Expanding the determinant:
\( \vec{v} = \hat{i}(0 \cdot 1 - (-1) \cdot 1) - \hat{j}(-6 \cdot 1 - 3 \cdot (-1)) + \hat{k}(-6 \cdot 1 - 0 \cdot 3) \)
\( \vec{v} = \hat{i}(1) + \hat{j}(-3) - \hat{k}(-6) = \hat{i} + 3\hat{j} - 6\hat{k} \)
Finally, calculate \( |\vec{v}|^2 \):
\( |\vec{v}|^2 = (1)^2 + (3)^2 + (-6)^2 = 1 + 9 + 36 = 46 \)
The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are: