Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2 is :
Given the functional equation \( f(x+y)=f(x)f(y) \) for all \( x,y \in \mathbb{R} \), it's known that such an equation often indicates an exponential function. Assume \( f(x)=e^{c x} \). Then:
\( f(0)=e^{c \cdot 0}=1 \)
Taking the derivative of both sides of \( f(x+y)=f(x)f(y) \) with respect to \( y \) and evaluating at \( y=0 \), we get:
\( f'(x)=f(x)f'(0) \)
Substituting \( f'(0)=4a \), we have:
\( f'(x)=4a f(x) \)
Solving this differential equation \( f'(x)=c f(x) \) gives \( f(x)=e^{4a x} \).
Now, apply the given second differential equation:
\( f''(x)-3a f'(x)-f(x)=0 \)
Calculate \( f''(x)=16a^2 e^{4a x} \) and \( f'(x)=4a e^{4a x} \). Substitute into the equation:
\( 16a^2 e^{4a x} - 3a (4a e^{4a x}) - e^{4a x}=0 \)
Simplify:
\( 16a^2 e^{4a x} - 12a^2 e^{4a x} - e^{4a x}=0 \)
\( (4a^2-1)e^{4a x}=0 \)
For nontrivial solutions, \( 4a^2=1 \); thus \( a=\frac{1}{2} \). Hence, \( f(x)=e^{2x} \).
Find the area of region \( R = \{(x,y) \mid 0 \leq y \leq f(ax), 0 \leq x \leq 2 \}\):
Substitute \( a=\frac{1}{2} \):
\( f(ax)=e^{2(ax)}=e^{x} \)
The area under \( y=e^{x} \) from \( x=0 \) to \( x=2 \) is:
\(\int_0^2 e^x \, dx = [e^x]_0^2 = e^2 - e^0 = e^2 - 1 \)
Hence, the area of region \( R \) is \( e^2 - 1 \).
If all the words with or without meaning made using all the letters of the word "KANPUR" are arranged as in a dictionary, then the word at 440th position in this arrangement is:
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]