Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2 is :
Given the functional equation \( f(x+y)=f(x)f(y) \) for all \( x,y \in \mathbb{R} \), it's known that such an equation often indicates an exponential function. Assume \( f(x)=e^{c x} \). Then:
\( f(0)=e^{c \cdot 0}=1 \)
Taking the derivative of both sides of \( f(x+y)=f(x)f(y) \) with respect to \( y \) and evaluating at \( y=0 \), we get:
\( f'(x)=f(x)f'(0) \)
Substituting \( f'(0)=4a \), we have:
\( f'(x)=4a f(x) \)
Solving this differential equation \( f'(x)=c f(x) \) gives \( f(x)=e^{4a x} \).
Now, apply the given second differential equation:
\( f''(x)-3a f'(x)-f(x)=0 \)
Calculate \( f''(x)=16a^2 e^{4a x} \) and \( f'(x)=4a e^{4a x} \). Substitute into the equation:
\( 16a^2 e^{4a x} - 3a (4a e^{4a x}) - e^{4a x}=0 \)
Simplify:
\( 16a^2 e^{4a x} - 12a^2 e^{4a x} - e^{4a x}=0 \)
\( (4a^2-1)e^{4a x}=0 \)
For nontrivial solutions, \( 4a^2=1 \); thus \( a=\frac{1}{2} \). Hence, \( f(x)=e^{2x} \).
Find the area of region \( R = \{(x,y) \mid 0 \leq y \leq f(ax), 0 \leq x \leq 2 \}\):
Substitute \( a=\frac{1}{2} \):
\( f(ax)=e^{2(ax)}=e^{x} \)
The area under \( y=e^{x} \) from \( x=0 \) to \( x=2 \) is:
\(\int_0^2 e^x \, dx = [e^x]_0^2 = e^2 - e^0 = e^2 - 1 \)
Hence, the area of region \( R \) is \( e^2 - 1 \).
From $f(x+y)=f(x)f(y)$ and differentiability we get the exponential form. Let $k=f'(0)$. Then $f(x)=e^{kx}$ for all $x$ (standard result for differentiable multiplicative Cauchy equation).
Area $=e^{2}-1$. (Option 1)
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
A thin transparent film with refractive index 1.4 is held on a circular ring of radius 1.8 cm. The fluid in the film evaporates such that transmission through the film at wavelength 560 nm goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is:
The major product (A) formed in the following reaction sequence is
