Step 1. Assume \( \sin^{-1} x = \theta \), so that \( \sin \theta = x \).
Step 2. Given \( \cos(2\theta) = \frac{1}{9} \), we use the identity \( \cos(2\theta) = 1 - 2\sin^2 \theta \):
\(1 - 2x^2 = \frac{1}{9}\)
\(2x^2 = 1 - \frac{1}{9} = \frac{8}{9}\)
\(x^2 = \frac{4}{9} \implies x = \pm \frac{2}{3}\)
Step 3. Since \( m \) and \( n \) are co-prime natural numbers, we take \( x = \frac{2}{3} \), so \( m = 2 \) and \( n = 3 \).
Step 4. Form the quadratic equation \( mx^2 - nx - m + n = 0 \):
\(2x^2 - 3x - 2 + 3 = 0\)
\(2x^2 - 3x + 1 = 0\)
Step 5. Solve for the roots \( \alpha \) and \( \beta \):
\(x = \frac{3 \pm \sqrt{9 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = \frac{3 \pm \sqrt{1}}{4}\)
\(x = 1, \, \frac{1}{2}\)
Step 6. Check if the point \( (\alpha, \beta) = (1, \frac{1}{2}) \) satisfies any of the given equations:**
\(5(1) + 8 \left( \frac{1}{2} \right) = 5 + 4 = 9\)
Thus, the point \( (\alpha, \beta) \) lies on the line \( 5x + 8y = 9 \).
The Correct Answer is: \( 5x + 8y = 9 \).