Given: \[ f'(x) = 3x^2 + 2ax + \frac{b}{x} \] \[ f'(-1) = 0 \quad \text{and} \quad f'(2) = 0 \] \[ \Rightarrow 3 - 2a + \frac{b}{-1} = 0 \quad \text{and} \quad 12 + 4a + \frac{b}{2} = 0 \] \[ \Rightarrow 2a + b = 3 \quad \text{and} \quad 24 + 8a + b = 0 \] \[ \Rightarrow 8a + b = -24 \] Solving the equations: \[ 6a = -27 \Rightarrow a = -\frac{27}{6} = -\frac{9}{2} \] \[ b = 3 - 2a = 12 \] Now, \[ f''(x) = 6x + 2a - \frac{b}{x^2} \] \[ f''(-1) = -6 + 2a - b < 0 \quad \text{and} \quad f''(2) = 0 \] Also, \[ f'(x) = \frac{3x^3 + 2ax^2 + b}{x} = \frac{3x^3 - 9x^2 + 12}{x} \] \[ \Rightarrow f'(x) = \frac{3(x+1)(x-2)^2}{x} \] Now integrate to find \( f(x) \): \[ f(-2) = -8 + 4a + b \ln|2| + 2 + 1 = -8 - 18 + 12\ln2 + 3 = 12\ln2 - 25 = 8.4 - 25 = -16.6 = m \] \[ f(-1) = -1 + a + 1 = a = -4.5 = M \] \[ f\left(-\frac{1}{2}\right) = -\frac{1}{8} + \frac{a}{4} - b \ln2 + 1 = -\frac{1}{8} - \frac{9}{8} - 12\ln2 + 1 \] Finally, \[ |m + M| = 21.1 \] \[ \boxed{|m + M| = 21.1} \]