Given determinant:
\(\begin{vmatrix} x-1 & 2 & 1 \\ 2 & x-1 & 2 \\ 1 & x+2 & x-1 \end{vmatrix} = ax^3 + bx^2 + cx + d\)
To find: Find the value of d.
Step 1: Compute the determinant of the 3x3 matrix.
The determinant of the given matrix can be computed using cofactor expansion along the first row:
\(\text{det} = (x-1) \begin{vmatrix} x-1 & 2 \\ x+2 & x-1 \end{vmatrix} - 2 \begin{vmatrix} 2 & 2 \\ 1 & x-1 \end{vmatrix} + 1 \begin{vmatrix} 2 & x-1 \\ 1 & x+2 \end{vmatrix}\)
Step 2: Compute each 2x2 determinant.
Step 3: Substitute these values back into the determinant expression.
\(\text{det} = (x-1)(x^2 - 4x - 3) - 2(2x - 4) + 1(x + 5)\)
Step 4: Expand and simplify.
First, expand each term:
\((x-1)(x^2 - 4x - 3) = x(x^2 - 4x - 3) - (x^2 - 4x - 3) = x^3 - 4x^2 - 3x - x^2 + 4x + 3 = x^3 - 5x^2 + x + 3\)
-2(2x - 4) = -4x + 8
1(x + 5) = x + 5
Now combine all terms:
\(\text{det} = x^3 - 5x^2 + x + 3 - 4x + 8 + x + 5\)
Simplify the expression:
\(\text{det} = x^3 - 5x^2 + (x - 4x + x) + (3 + 8 + 5)\)
\(\text{det} = x^3 - 5x^2 - 2x + 16\)
Step 5: Identify the value of d.
The given determinant is equal to \(ax^3 + bx^2 + cx + d\), where \(a = 1\), \(b = -5\), \(c = -2\), and \(d = 16\).
Answer: The value of d is 16.
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to