Given determinant:
\(\begin{vmatrix} x-1 & 2 & 1 \\ 2 & x-1 & 2 \\ 1 & x+2 & x-1 \end{vmatrix} = ax^3 + bx^2 + cx + d\)
To find: Find the value of d.
Step 1: Compute the determinant of the 3x3 matrix.
The determinant of the given matrix can be computed using cofactor expansion along the first row:
\(\text{det} = (x-1) \begin{vmatrix} x-1 & 2 \\ x+2 & x-1 \end{vmatrix} - 2 \begin{vmatrix} 2 & 2 \\ 1 & x-1 \end{vmatrix} + 1 \begin{vmatrix} 2 & x-1 \\ 1 & x+2 \end{vmatrix}\)
Step 2: Compute each 2x2 determinant.
Step 3: Substitute these values back into the determinant expression.
\(\text{det} = (x-1)(x^2 - 4x - 3) - 2(2x - 4) + 1(x + 5)\)
Step 4: Expand and simplify.
First, expand each term:
\((x-1)(x^2 - 4x - 3) = x(x^2 - 4x - 3) - (x^2 - 4x - 3) = x^3 - 4x^2 - 3x - x^2 + 4x + 3 = x^3 - 5x^2 + x + 3\)
-2(2x - 4) = -4x + 8
1(x + 5) = x + 5
Now combine all terms:
\(\text{det} = x^3 - 5x^2 + x + 3 - 4x + 8 + x + 5\)
Simplify the expression:
\(\text{det} = x^3 - 5x^2 + (x - 4x + x) + (3 + 8 + 5)\)
\(\text{det} = x^3 - 5x^2 - 2x + 16\)
Step 5: Identify the value of d.
The given determinant is equal to \(ax^3 + bx^2 + cx + d\), where \(a = 1\), \(b = -5\), \(c = -2\), and \(d = 16\).
Answer: The value of d is 16.
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to