\[ \vec{d} = \vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{vmatrix} = \vec{i}(1-2) - \vec{j}(1-2) + \vec{k}(1-4) = -\vec{i} + \vec{j} - 3\vec{k} \]
Given conditions lead to a system of equations involving \(\vec{c}\), solve these using algebraic methods to find \(\vec{c}\).
\[ 10 - 3\vec{b} \cdot \vec{c} + |\vec{d}| = 10 - 3(2x + 2y + z) + \sqrt{1 + 1 + 9} = 10 - 6x - 6y - 3z + \sqrt{11} \]
Compute \(\left|10 - 3\vec{b} \cdot \vec{c} + |\vec{d}|\right|^2\).
Find the solution to the following linear programming problem (if it exists) graphically:
Maximize \( Z = x + y \)
Subject to the constraints \[ x - y \leq -1, \quad -x + y \leq 0, \quad x, y \geq 0. \]
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):