\[ \vec{d} = \vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{vmatrix} = \vec{i}(1-2) - \vec{j}(1-2) + \vec{k}(1-4) = -\vec{i} + \vec{j} - 3\vec{k} \]
Given conditions lead to a system of equations involving \(\vec{c}\), solve these using algebraic methods to find \(\vec{c}\).
\[ 10 - 3\vec{b} \cdot \vec{c} + |\vec{d}| = 10 - 3(2x + 2y + z) + \sqrt{1 + 1 + 9} = 10 - 6x - 6y - 3z + \sqrt{11} \]
Compute \(\left|10 - 3\vec{b} \cdot \vec{c} + |\vec{d}|\right|^2\).
The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are: