\[ \vec{d} = \vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{vmatrix} = \vec{i}(1-2) - \vec{j}(1-2) + \vec{k}(1-4) = -\vec{i} + \vec{j} - 3\vec{k} \]
Given conditions lead to a system of equations involving \(\vec{c}\), solve these using algebraic methods to find \(\vec{c}\).
\[ 10 - 3\vec{b} \cdot \vec{c} + |\vec{d}| = 10 - 3(2x + 2y + z) + \sqrt{1 + 1 + 9} = 10 - 6x - 6y - 3z + \sqrt{11} \]
Compute \(\left|10 - 3\vec{b} \cdot \vec{c} + |\vec{d}|\right|^2\).
If the mean and the variance of 6, 4, a, 8, b, 12, 10, 13 are 9 and 9.25 respectively, then \(a + b + ab\) is equal to:
Given three identical bags each containing 10 balls, whose colours are as follows:
| Bag I | 3 Red | 2 Blue | 5 Green |
| Bag II | 4 Red | 3 Blue | 3 Green |
| Bag III | 5 Red | 1 Blue | 4 Green |
A person chooses a bag at random and takes out a ball. If the ball is Red, the probability that it is from Bag I is $ p $ and if the ball is Green, the probability that it is from Bag III is $ q $, then the value of $ \frac{1}{p} + \frac{1}{q} $ is:
If \( \theta \in \left[ -\frac{7\pi}{6}, \frac{4\pi}{3} \right] \), then the number of solutions of \[ \sqrt{3} \csc^2 \theta - 2(\sqrt{3} - 1)\csc \theta - 4 = 0 \] is equal to ______.