For a first-order reaction:
\[
k = \frac{2.303}{t} \log \left( \frac{[A]_0}{[A]} \right)
\]
Let the initial amount be \([A]_0\), and three-fourths decomposed means \([A] = \frac{1}{4}[A]_0\)
So:
\[
k = \frac{2.303}{t} \log \left( \frac{[A]_0}{[A]_0/4} \right) = \frac{2.303}{t} \log 4
\Rightarrow k = \frac{2.303 \times 0.6021}{t}
\]
Given \( k = 2.3 \times 10^{-5} \ \text{s}^{-1} \), so:
\[
2.3 \times 10^{-5} = \frac{2.303 \times 0.6021}{t}
\Rightarrow t = \frac{2.303 \times 0.6021}{2.3 \times 10^{-5}} \approx \frac{1.387}{2.3 \times 10^{-5}} \approx 60217.4\ \text{seconds}
\]
\[
\boxed{t \approx 6.02 \times 10^4\ \text{seconds}}
\]