If the system of equation $$ 2x + \lambda y + 3z = 5 \\3x + 2y - z = 7 \\4x + 5y + \mu z = 9 $$ has infinitely many solutions, then $ \lambda^2 + \mu^2 $ is equal to:
The given system of equations is: \[ 2x + \lambda y + 3z = 5 3x + 2y - z = 7 \\4x + 5y + \mu z = 9 \] To check for infinitely many solutions, we use the determinant of the coefficient matrix. The coefficient matrix is: \[ \Delta = \begin{vmatrix} 2 & \lambda & 3 3 & 2 & -1 \\ 4 & 5 & \mu \end{vmatrix} \] \[ \Delta = 0 \quad \text{(for infinitely many solutions)} \] Expanding the determinant: \[ \Delta = 2 \begin{vmatrix} 2 & -1 5 & \mu \end{vmatrix} - \lambda \begin{vmatrix} 3 & -1 \\ 4 & \mu \end{vmatrix} + 3 \begin{vmatrix} 3 & 2 \\ 4 & 5 \end{vmatrix} \] \[ = 2(\lambda \mu - (-5)) - \lambda (3 \mu - (-4)) + 3(15 - 8) \] \[ = 2(\lambda \mu + 5) - \lambda (3 \mu + 4) + 3(7) \] \[ = 2\lambda \mu + 10 - \lambda (3 \mu + 4) + 21 \] \[ = 2\lambda \mu + 10 - \lambda 3 \mu - 4 \lambda + 21 \] After solving the system, we find: \[ \Delta_3 = 0 \quad \text{and} \quad 2(7) + \lambda(1) + 5(7) = 0 \] Solving for \( \lambda \) and \( \mu \), we find \( \lambda = -1 \) and \( \mu = -5 \). Hence, \[ \lambda^2 + \mu^2 = (-1)^2 + (-5)^2 = 1 + 25 = 26 \]