The given points are:
\( A(-6, 0, 0), \quad B(0, -2, 0), \quad C(0, 0, 3) \)
Step 1: Vectors
\( \overrightarrow{AB} = 6\hat{i} - 2\hat{j} \)
\( \overrightarrow{BC} = 2\hat{j} + 3\hat{k} \)
\( \overrightarrow{AC} = 6\hat{i} + 3\hat{k} \)
Let \( H(\alpha, \beta, \frac{6}{7}) \) be the foot of the perpendicular from A to BC.
Step 2: Orthogonality of \( \overrightarrow{AH} \) and \( \overrightarrow{BC} \)
\( \overrightarrow{AH} \cdot \overrightarrow{BC} = 0 \)
Substituting:
\( (\alpha + 6, \beta, \frac{6}{7}) \cdot (0, 2, 3) = 0 \)
Simplify:
\( 2\beta + \frac{18}{7} = 0 \Rightarrow \beta = -\frac{9}{7} \)
Step 3: Orthogonality of \( \overrightarrow{CH} \) and \( \overrightarrow{AB} \)
\( \overrightarrow{CH} \cdot \overrightarrow{AB} = 0 \)
Substituting:
\( (\alpha, \beta, -\frac{15}{7}) \cdot (6, -2, 0) = 0 \)
Simplify:
\( 6\alpha - 2\beta = 0 \Rightarrow 6\alpha + \frac{18}{7} = 0 \Rightarrow \alpha = -\frac{3}{7} \)
Step 4: Calculating \( 98(\alpha + \beta)^2 \)
\( \alpha + \beta = -\frac{3}{7} - \frac{9}{7} = -\frac{12}{7} \)
Square the sum:
\( (\alpha + \beta)^2 = \left( -\frac{12}{7} \right)^2 = \frac{144}{49} \)
Multiply:
Quick Tip
\( 98(\alpha + \beta)^2 = 98 \cdot \frac{144}{49} = 2 \cdot 144 = 288 \)
For \(a, b \in \mathbb{Z}\) and \(|a - b| \leq 10\), let the angle between the plane \(P: ax + y - z = b\) and the line \(L: x - 1 = a - y = z + 1\) be \(\cos^{-1}\left(\frac{1}{3}\right)\). If the distance of the point \((6, -6, 4)\) from the plane \(P\) is \(3\sqrt{6}\), then \(a^4 + b^2\) is equal to:
Let P₁ be the plane 3x-y-7z = 11 and P₂ be the plane passing through the points (2,-1,0), (2,0,-1), and (5,1,1). If the foot of the perpendicular drawn from the point (7,4,-1) on the line of intersection of the planes P₁ and P₂ is (α, β, γ), then a + ẞ+ y is equal to