$\sin^{-1} \left( -\frac{5}{6} \right)$
To solve this problem, we need to clearly understand the concept of the critical angle and how it relates to the refractive indices of the materials involved:
We are tasked with solving for the critical angles $ \theta_{1C} $ and $ \theta_{2C} $, and determining the relationship between the refractive indices $ n_1 $, $ n_2 $, and $ n_3 $. The solution proceeds as follows:
1. Critical Angle Relations:
The sine of the critical angle is given by:
$ \sin \theta_{1C} = \frac{n_1}{n_2} $
$ \sin \theta_{2C} = \frac{n_1}{n_3} $
2. Difference Between Sines:
We are given that:
$ \sin \theta_{2C} - \sin \theta_{1C} = \frac{1}{2} $
Substituting the expressions for $ \sin \theta_{1C} $ and $ \sin \theta_{2C} $:
$ \frac{n_1}{n_3} - \frac{n_1}{n_2} = \frac{1}{2} $
3. Simplifying the Equation:
Factor out $ n_1 $:
$ n_1 \left( \frac{1}{n_3} - \frac{1}{n_2} \right) = \frac{1}{2} $
Simplify the terms inside the parentheses:
$ \frac{1}{n_3} - \frac{1}{n_2} = \frac{n_2 - n_3}{n_2 n_3} $
Thus, the equation becomes:
$ n_1 \cdot \frac{n_2 - n_3}{n_2 n_3} = \frac{1}{2} $
4. Substituting Given Values:
From the problem, we know:
$ n_1 \left( \frac{2}{5} - 1 \right) = \frac{n_3}{2} $
Simplify $ \frac{2}{5} - 1 $:
$ \frac{2}{5} - 1 = \frac{2}{5} - \frac{5}{5} = -\frac{3}{5} $
Substitute this back into the equation:
$ n_1 \cdot \left( -\frac{3}{5} \right) = \frac{n_3}{2} $
Solve for $ n_1 $:
$ n_1 = \frac{n_3}{2} \cdot \left( -\frac{5}{3} \right) = -\frac{5}{6} n_3 $
5. Ratio of Refractive Indices:
We now determine the ratio $ \frac{n_1}{n_2} $. From earlier, we know:
$ \frac{n_1}{n_2} = \frac{-5}{6} $
6. Inverse Sine Calculation:
Finally, the critical angle $ \theta_{1C} $ is given by:
$ \theta_{1C} = \sin^{-1} \left( \frac{n_1}{n_2} \right) $
Substitute $ \frac{n_1}{n_2} = \frac{-5}{6} $:
$ \theta_{1C} = \sin^{-1} \left( -\frac{5}{6} \right) $
Final Answer:
The critical angle $ \theta_{1C} $ is: $ \sin^{-1} \left( -\frac{5}{6} \right) $
A parallel beam of light travelling in air (refractive index \(1.0\)) is incident on a convex spherical glass surface of radius of curvature \(50 \, \text{cm}\). Refractive index of glass is \(1.5\). The rays converge to a point at a distance \(x \, \text{cm}\) from the centre of curvature of the spherical surface. The value of \(x\) is ___________.
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = 4/3 \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \frac{n_2}{2n_1} \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is cm. 
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = 4/3 \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \frac{n_2}{2n_1} \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is cm. 
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.