$\sin^{-1} \left( -\frac{5}{6} \right)$
We are tasked with solving for the critical angles $ \theta_{1C} $ and $ \theta_{2C} $, and determining the relationship between the refractive indices $ n_1 $, $ n_2 $, and $ n_3 $. The solution proceeds as follows:
1. Critical Angle Relations:
The sine of the critical angle is given by:
$ \sin \theta_{1C} = \frac{n_1}{n_2} $
$ \sin \theta_{2C} = \frac{n_1}{n_3} $
2. Difference Between Sines:
We are given that:
$ \sin \theta_{2C} - \sin \theta_{1C} = \frac{1}{2} $
Substituting the expressions for $ \sin \theta_{1C} $ and $ \sin \theta_{2C} $:
$ \frac{n_1}{n_3} - \frac{n_1}{n_2} = \frac{1}{2} $
3. Simplifying the Equation:
Factor out $ n_1 $:
$ n_1 \left( \frac{1}{n_3} - \frac{1}{n_2} \right) = \frac{1}{2} $
Simplify the terms inside the parentheses:
$ \frac{1}{n_3} - \frac{1}{n_2} = \frac{n_2 - n_3}{n_2 n_3} $
Thus, the equation becomes:
$ n_1 \cdot \frac{n_2 - n_3}{n_2 n_3} = \frac{1}{2} $
4. Substituting Given Values:
From the problem, we know:
$ n_1 \left( \frac{2}{5} - 1 \right) = \frac{n_3}{2} $
Simplify $ \frac{2}{5} - 1 $:
$ \frac{2}{5} - 1 = \frac{2}{5} - \frac{5}{5} = -\frac{3}{5} $
Substitute this back into the equation:
$ n_1 \cdot \left( -\frac{3}{5} \right) = \frac{n_3}{2} $
Solve for $ n_1 $:
$ n_1 = \frac{n_3}{2} \cdot \left( -\frac{5}{3} \right) = -\frac{5}{6} n_3 $
5. Ratio of Refractive Indices:
We now determine the ratio $ \frac{n_1}{n_2} $. From earlier, we know:
$ \frac{n_1}{n_2} = \frac{-5}{6} $
6. Inverse Sine Calculation:
Finally, the critical angle $ \theta_{1C} $ is given by:
$ \theta_{1C} = \sin^{-1} \left( \frac{n_1}{n_2} \right) $
Substitute $ \frac{n_1}{n_2} = \frac{-5}{6} $:
$ \theta_{1C} = \sin^{-1} \left( -\frac{5}{6} \right) $
Final Answer:
The critical angle $ \theta_{1C} $ is: $ \sin^{-1} \left( -\frac{5}{6} \right) $
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: