$\sin^{-1} \left( -\frac{5}{6} \right)$
We are tasked with solving for the critical angles $ \theta_{1C} $ and $ \theta_{2C} $, and determining the relationship between the refractive indices $ n_1 $, $ n_2 $, and $ n_3 $. The solution proceeds as follows:
1. Critical Angle Relations:
The sine of the critical angle is given by:
$ \sin \theta_{1C} = \frac{n_1}{n_2} $
$ \sin \theta_{2C} = \frac{n_1}{n_3} $
2. Difference Between Sines:
We are given that:
$ \sin \theta_{2C} - \sin \theta_{1C} = \frac{1}{2} $
Substituting the expressions for $ \sin \theta_{1C} $ and $ \sin \theta_{2C} $:
$ \frac{n_1}{n_3} - \frac{n_1}{n_2} = \frac{1}{2} $
3. Simplifying the Equation:
Factor out $ n_1 $:
$ n_1 \left( \frac{1}{n_3} - \frac{1}{n_2} \right) = \frac{1}{2} $
Simplify the terms inside the parentheses:
$ \frac{1}{n_3} - \frac{1}{n_2} = \frac{n_2 - n_3}{n_2 n_3} $
Thus, the equation becomes:
$ n_1 \cdot \frac{n_2 - n_3}{n_2 n_3} = \frac{1}{2} $
4. Substituting Given Values:
From the problem, we know:
$ n_1 \left( \frac{2}{5} - 1 \right) = \frac{n_3}{2} $
Simplify $ \frac{2}{5} - 1 $:
$ \frac{2}{5} - 1 = \frac{2}{5} - \frac{5}{5} = -\frac{3}{5} $
Substitute this back into the equation:
$ n_1 \cdot \left( -\frac{3}{5} \right) = \frac{n_3}{2} $
Solve for $ n_1 $:
$ n_1 = \frac{n_3}{2} \cdot \left( -\frac{5}{3} \right) = -\frac{5}{6} n_3 $
5. Ratio of Refractive Indices:
We now determine the ratio $ \frac{n_1}{n_2} $. From earlier, we know:
$ \frac{n_1}{n_2} = \frac{-5}{6} $
6. Inverse Sine Calculation:
Finally, the critical angle $ \theta_{1C} $ is given by:
$ \theta_{1C} = \sin^{-1} \left( \frac{n_1}{n_2} \right) $
Substitute $ \frac{n_1}{n_2} = \frac{-5}{6} $:
$ \theta_{1C} = \sin^{-1} \left( -\frac{5}{6} \right) $
Final Answer:
The critical angle $ \theta_{1C} $ is: $ \sin^{-1} \left( -\frac{5}{6} \right) $
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to