$\sin^{-1} \left( -\frac{5}{6} \right)$
To solve this problem, we need to clearly understand the concept of the critical angle and how it relates to the refractive indices of the materials involved:
We are tasked with solving for the critical angles $ \theta_{1C} $ and $ \theta_{2C} $, and determining the relationship between the refractive indices $ n_1 $, $ n_2 $, and $ n_3 $. The solution proceeds as follows:
1. Critical Angle Relations:
The sine of the critical angle is given by:
$ \sin \theta_{1C} = \frac{n_1}{n_2} $
$ \sin \theta_{2C} = \frac{n_1}{n_3} $
2. Difference Between Sines:
We are given that:
$ \sin \theta_{2C} - \sin \theta_{1C} = \frac{1}{2} $
Substituting the expressions for $ \sin \theta_{1C} $ and $ \sin \theta_{2C} $:
$ \frac{n_1}{n_3} - \frac{n_1}{n_2} = \frac{1}{2} $
3. Simplifying the Equation:
Factor out $ n_1 $:
$ n_1 \left( \frac{1}{n_3} - \frac{1}{n_2} \right) = \frac{1}{2} $
Simplify the terms inside the parentheses:
$ \frac{1}{n_3} - \frac{1}{n_2} = \frac{n_2 - n_3}{n_2 n_3} $
Thus, the equation becomes:
$ n_1 \cdot \frac{n_2 - n_3}{n_2 n_3} = \frac{1}{2} $
4. Substituting Given Values:
From the problem, we know:
$ n_1 \left( \frac{2}{5} - 1 \right) = \frac{n_3}{2} $
Simplify $ \frac{2}{5} - 1 $:
$ \frac{2}{5} - 1 = \frac{2}{5} - \frac{5}{5} = -\frac{3}{5} $
Substitute this back into the equation:
$ n_1 \cdot \left( -\frac{3}{5} \right) = \frac{n_3}{2} $
Solve for $ n_1 $:
$ n_1 = \frac{n_3}{2} \cdot \left( -\frac{5}{3} \right) = -\frac{5}{6} n_3 $
5. Ratio of Refractive Indices:
We now determine the ratio $ \frac{n_1}{n_2} $. From earlier, we know:
$ \frac{n_1}{n_2} = \frac{-5}{6} $
6. Inverse Sine Calculation:
Finally, the critical angle $ \theta_{1C} $ is given by:
$ \theta_{1C} = \sin^{-1} \left( \frac{n_1}{n_2} \right) $
Substitute $ \frac{n_1}{n_2} = \frac{-5}{6} $:
$ \theta_{1C} = \sin^{-1} \left( -\frac{5}{6} \right) $
Final Answer:
The critical angle $ \theta_{1C} $ is: $ \sin^{-1} \left( -\frac{5}{6} \right) $
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = 4/3 \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \frac{n_2}{2n_1} \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is cm. 

If A and B are two events such that \( P(A \cap B) = 0.1 \), and \( P(A|B) \) and \( P(B|A) \) are the roots of the equation \( 12x^2 - 7x + 1 = 0 \), then the value of \(\frac{P(A \cup B)}{P(A \cap B)}\)