The piecewise definition of \( f(t) \) is given as:
\[ f(t) = \begin{cases} 2, & t = 1 \\ 4 - 2t, & 1 < t < 3 \\ -2, & t = 3 \\ -8 - 2t, & 3 < t < 5 \\ \text{and so on.} \end{cases} \]
The integral \( g(x) \) is defined as:
\[ g(x) = \int_1^x f(t) \, dt \]
From the structure of \( f(t) \), the integral satisfies:
\[ g(x) = 0 \quad \text{when} \quad x = 3, 5, 7, \dots \]
Thus, we identify \( \alpha = 3 \), the first point where \( g(x) = 0 \) after \( x = 1 \).
We calculate the limit:
\[ \beta = \lim_{x \to 1^+} \frac{g(x)}{x - 1} \]
From the Fundamental Theorem of Calculus:
\[ \beta = f(1) = 2 \]
Thus, \( \beta = 2 \).
The sum is:
\[ \alpha + \beta = 3 + 2 = 5 \]