Step 1:
For a standard hyperbola \[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \] the coordinates of the foci are \((\pm ae, 0)\), and the directrices are \(x = \pm \frac{a}{e}\).
Step 2:
Given that one focus is at \((-5, 0)\), we have: \[ ae = 5. \] The corresponding directrix is \(5x + 9 = 0 \Rightarrow x = -\frac{9}{5}\). This means: \[ \frac{a}{e} = \frac{9}{5}. \] Multiplying both expressions: \[ a^2 = (ae)\left(\frac{a}{e}\right) = 5 \times \frac{9}{5} = 9 \Rightarrow a = 3. \] Hence, \[ e = \frac{5}{a} = \frac{5}{3}. \]
Step 3:
We know that \(e^2 = 1 + \frac{b^2}{a^2}\).
Substituting the values: \[ \left(\frac{5}{3}\right)^2 = 1 + \frac{b^2}{9} \Rightarrow \frac{25}{9} - 1 = \frac{b^2}{9} \Rightarrow \frac{16}{9} = \frac{b^2}{9} \Rightarrow b^2 = 16. \]
Step 4:
The hyperbola is therefore: \[ \frac{x^2}{9} - \frac{y^2}{16} = 1. \] Given that the point \((\alpha, 2\sqrt{5})\) lies on the hyperbola: \[ \frac{\alpha^2}{9} - \frac{(2\sqrt{5})^2}{16} = 1. \] Simplifying: \[ \frac{\alpha^2}{9} - \frac{20}{16} = 1 \Rightarrow \frac{\alpha^2}{9} = \frac{9}{4} \Rightarrow \alpha^2 = \frac{81}{4}. \] Thus, \[ \alpha = \pm \frac{9}{2}. \]
Step 5:
The focal distances from \((\alpha, 2\sqrt{5})\) to the foci \((\pm 5, 0)\) are: \[ d_1 = \sqrt{(\alpha + 5)^2 + (2\sqrt{5})^2}, \quad d_2 = \sqrt{(\alpha - 5)^2 + (2\sqrt{5})^2}. \] For \(\alpha = \frac{9}{2}\):
\[ d_1 = \sqrt{(9.5)^2 + 20} = \sqrt{110.25} = 10.5, \] \[ d_2 = \sqrt{(-0.5)^2 + 20} = \sqrt{20.25} = 4.5. \] Therefore, \[ p = d_1 \cdot d_2 = 10.5 \times 4.5 = 47.25. \]
Step 6:
\[ 4p = 4 \times 47.25 = 189. \]
Final Answer:
\[ \boxed{189} \]
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).