Step 1: Determine \(\cos\theta\)
Given:
\[ \theta = \sin^{-1}\left(\frac{\sqrt{65}}{9}\right) \] Thus: \[ \sin\theta = \frac{\sqrt{65}}{9} \] Using the identity \(\sin^2\theta + \cos^2\theta = 1\): \[ \cos\theta = \sqrt{1 - \left(\frac{\sqrt{65}}{9}\right)^2} = \sqrt{1 - \frac{65}{81}} = \sqrt{\frac{16}{81}} = \frac{4}{9} \]
Step 2: Compute Dot Products
Since \(\hat{a}\) and \(\hat{b}\) are unit vectors: \[ \hat{a} \cdot \hat{b} = \cos\theta = \frac{4}{9} \] \[ \hat{a} \cdot (\hat{a} \times \hat{b}) = 0 \quad \text{(since \(\hat{a} \times \hat{b}\) is perpendicular to \(\hat{a}\))} \] \[ \hat{b} \cdot (\hat{a} \times \hat{b}) = 0 \quad \text{(since \(\hat{a} \times \hat{b}\) is perpendicular to \(\hat{b}\))} \]
Step 3: Compute \(\vec{c} \cdot \hat{a}\) and \(\vec{c} \cdot \hat{b}\)
Using the expression for \(\vec{c}\):
\[ \vec{c} \cdot \hat{a} = (3\hat{a} + 6\hat{b} + 9(\hat{a} \times \hat{b})) \cdot \hat{a} = 3 + 6(\hat{b} \cdot \hat{a}) + 0 = 3 + 6 \times \frac{4}{9} = 3 + \frac{24}{9} = \frac{17}{3} \] \[ \vec{c} \cdot \hat{b} = (3\hat{a} + 6\hat{b} + 9(\hat{a} \times \hat{b})) \cdot \hat{b} = 3(\hat{a} \cdot \hat{b}) + 6 + 0 = 3 \times \frac{4}{9} + 6 = \frac{12}{9} + 6 = \frac{22}{3} \]
Step 4: Compute the Required Expression
Now calculate:
\[ 9(\vec{c} \cdot \hat{a}) - 3(\vec{c} \cdot \hat{b}) = 9 \times \frac{17}{3} - 3 \times \frac{22}{3} = 51 - 22 = 29 \]
Step 5: Match with Options
The result is 29, which corresponds to option (3).
Consider two vectors $\vec{u} = 3\hat{i} - \hat{j}$ and $\vec{v} = 2\hat{i} + \hat{j} - \lambda \hat{k}$, $\lambda>0$. The angle between them is given by $\cos^{-1} \left( \frac{\sqrt{5}}{2\sqrt{7}} \right)$. Let $\vec{v} = \vec{v}_1 + \vec{v}_2$, where $\vec{v}_1$ is parallel to $\vec{u}$ and $\vec{v}_2$ is perpendicular to $\vec{u}$. Then the value $|\vec{v}_1|^2 + |\vec{v}_2|^2$ is equal to
In the following circuit, the reading of the ammeter will be: (Take Zener breakdown voltage = 4 V)
If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to