Step 1: Determine \(\cos\theta\)
Given:
\[ \theta = \sin^{-1}\left(\frac{\sqrt{65}}{9}\right) \] Thus: \[ \sin\theta = \frac{\sqrt{65}}{9} \] Using the identity \(\sin^2\theta + \cos^2\theta = 1\): \[ \cos\theta = \sqrt{1 - \left(\frac{\sqrt{65}}{9}\right)^2} = \sqrt{1 - \frac{65}{81}} = \sqrt{\frac{16}{81}} = \frac{4}{9} \]
Step 2: Compute Dot Products
Since \(\hat{a}\) and \(\hat{b}\) are unit vectors: \[ \hat{a} \cdot \hat{b} = \cos\theta = \frac{4}{9} \] \[ \hat{a} \cdot (\hat{a} \times \hat{b}) = 0 \quad \text{(since \(\hat{a} \times \hat{b}\) is perpendicular to \(\hat{a}\))} \] \[ \hat{b} \cdot (\hat{a} \times \hat{b}) = 0 \quad \text{(since \(\hat{a} \times \hat{b}\) is perpendicular to \(\hat{b}\))} \]
Step 3: Compute \(\vec{c} \cdot \hat{a}\) and \(\vec{c} \cdot \hat{b}\)
Using the expression for \(\vec{c}\):
\[ \vec{c} \cdot \hat{a} = (3\hat{a} + 6\hat{b} + 9(\hat{a} \times \hat{b})) \cdot \hat{a} = 3 + 6(\hat{b} \cdot \hat{a}) + 0 = 3 + 6 \times \frac{4}{9} = 3 + \frac{24}{9} = \frac{17}{3} \] \[ \vec{c} \cdot \hat{b} = (3\hat{a} + 6\hat{b} + 9(\hat{a} \times \hat{b})) \cdot \hat{b} = 3(\hat{a} \cdot \hat{b}) + 6 + 0 = 3 \times \frac{4}{9} + 6 = \frac{12}{9} + 6 = \frac{22}{3} \]
Step 4: Compute the Required Expression
Now calculate:
\[ 9(\vec{c} \cdot \hat{a}) - 3(\vec{c} \cdot \hat{b}) = 9 \times \frac{17}{3} - 3 \times \frac{22}{3} = 51 - 22 = 29 \]
Step 5: Match with Options
The result is 29, which corresponds to option (3).
Given: \[ \vec{c} \cdot \vec{a} = 3 + 6 \vec{a} \cdot \vec{b} \] \[ \vec{c} \cdot \vec{b} = 3 \vec{a} \cdot \vec{b} + 6 \] Now, \[ 9(\vec{c} \cdot \vec{a}) - 3(\vec{c} \cdot \vec{b}) = 27 - 18 + (54 - 9)\vec{a} \cdot \vec{b} \] \[ = 9 + 45\vec{a} \cdot \vec{b} \] Since \[ \vec{a} \cdot \vec{b} = \frac{\sqrt{81 - 65}}{9} \] \[ = \frac{\sqrt{16}}{9} \] \[ = \frac{4}{9} \] Therefore, \[ 9 + 45\left(\frac{4}{9}\right) = 9 + 20 = 29 \] \[ \boxed{29} \]
If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.