Step 1: Determine \(\cos\theta\)
Given:
\[ \theta = \sin^{-1}\left(\frac{\sqrt{65}}{9}\right) \] Thus: \[ \sin\theta = \frac{\sqrt{65}}{9} \] Using the identity \(\sin^2\theta + \cos^2\theta = 1\): \[ \cos\theta = \sqrt{1 - \left(\frac{\sqrt{65}}{9}\right)^2} = \sqrt{1 - \frac{65}{81}} = \sqrt{\frac{16}{81}} = \frac{4}{9} \]
Step 2: Compute Dot Products
Since \(\hat{a}\) and \(\hat{b}\) are unit vectors: \[ \hat{a} \cdot \hat{b} = \cos\theta = \frac{4}{9} \] \[ \hat{a} \cdot (\hat{a} \times \hat{b}) = 0 \quad \text{(since \(\hat{a} \times \hat{b}\) is perpendicular to \(\hat{a}\))} \] \[ \hat{b} \cdot (\hat{a} \times \hat{b}) = 0 \quad \text{(since \(\hat{a} \times \hat{b}\) is perpendicular to \(\hat{b}\))} \]
Step 3: Compute \(\vec{c} \cdot \hat{a}\) and \(\vec{c} \cdot \hat{b}\)
Using the expression for \(\vec{c}\):
\[ \vec{c} \cdot \hat{a} = (3\hat{a} + 6\hat{b} + 9(\hat{a} \times \hat{b})) \cdot \hat{a} = 3 + 6(\hat{b} \cdot \hat{a}) + 0 = 3 + 6 \times \frac{4}{9} = 3 + \frac{24}{9} = \frac{17}{3} \] \[ \vec{c} \cdot \hat{b} = (3\hat{a} + 6\hat{b} + 9(\hat{a} \times \hat{b})) \cdot \hat{b} = 3(\hat{a} \cdot \hat{b}) + 6 + 0 = 3 \times \frac{4}{9} + 6 = \frac{12}{9} + 6 = \frac{22}{3} \]
Step 4: Compute the Required Expression
Now calculate:
\[ 9(\vec{c} \cdot \hat{a}) - 3(\vec{c} \cdot \hat{b}) = 9 \times \frac{17}{3} - 3 \times \frac{22}{3} = 51 - 22 = 29 \]
Step 5: Match with Options
The result is 29, which corresponds to option (3).
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: