\(f(x) = \left\lfloor 1 + x \right\rfloor + \frac{\alpha^{2\left\lfloor x \right\rfloor + \left\{ x \right\}} + \left\lfloor x \right\rfloor - 1}{2\left\lfloor x \right\rfloor + \left\{ x \right\}} \)
\(\lim_{{x \to 0^-}} f(x) = \alpha - \frac{4}{3}\)
\(⇒\) \(\lim_{{x \to 0^-}} \left[ 1 + \left\lfloor x \right\rfloor + \frac{\alpha^{x + \left\lfloor x \right\rfloor} + \left\lfloor x \right\rfloor - 1}{x + \left\lfloor x \right\rfloor} \right] = \alpha - \frac{4}{3}\)
\(⇒\) \(\lim_{{h \to 0^-}} \left[ 1 - 1 + \frac{\alpha^{-h - 1} - 1 - 1}{-h - 1} \right] = \alpha - \frac{4}{3}\)
\(∴\) \(\frac{\alpha^{-1} - 2}{-1} = \alpha - \frac{4}{3}\)
\(⇒\) \(3α^2 – 10α + 3 = 0\)
\(∴\) \(α = 3 \ or\ \frac{1}{3}\)
\(∵\) α in integer, hence \(α = 3\)
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32
Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.
A derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.
Read More: Limits and Derivatives