\(f(x) = \left\lfloor 1 + x \right\rfloor + \frac{\alpha^{2\left\lfloor x \right\rfloor + \left\{ x \right\}} + \left\lfloor x \right\rfloor - 1}{2\left\lfloor x \right\rfloor + \left\{ x \right\}} \)
\(\lim_{{x \to 0^-}} f(x) = \alpha - \frac{4}{3}\)
\(⇒\) \(\lim_{{x \to 0^-}} \left[ 1 + \left\lfloor x \right\rfloor + \frac{\alpha^{x + \left\lfloor x \right\rfloor} + \left\lfloor x \right\rfloor - 1}{x + \left\lfloor x \right\rfloor} \right] = \alpha - \frac{4}{3}\)
\(⇒\) \(\lim_{{h \to 0^-}} \left[ 1 - 1 + \frac{\alpha^{-h - 1} - 1 - 1}{-h - 1} \right] = \alpha - \frac{4}{3}\)
\(∴\) \(\frac{\alpha^{-1} - 2}{-1} = \alpha - \frac{4}{3}\)
\(⇒\) \(3α^2 – 10α + 3 = 0\)
\(∴\) \(α = 3 \ or\ \frac{1}{3}\)
\(∵\) α in integer, hence \(α = 3\)
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
Evaluate the following limit: $ \lim_{n \to \infty} \prod_{r=3}^n \frac{r^3 - 8}{r^3 + 8} $.
If \( f(x) \) is defined as follows:
$$ f(x) = \begin{cases} 4, & \text{if } -\infty < x < -\sqrt{5}, \\ x^2 - 1, & \text{if } -\sqrt{5} \leq x \leq \sqrt{5}, \\ 4, & \text{if } \sqrt{5} \leq x < \infty. \end{cases} $$ If \( k \) is the number of points where \( f(x) \) is not differentiable, then \( k - 2 = \)
If the domain of the function \( f(x) = \frac{1}{\sqrt{3x + 10 - x^2}} + \frac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \( (1 + a)^2 + b^2 \) is equal to:
Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.
A derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.
Read More: Limits and Derivatives