\(f(x) = \left\lfloor 1 + x \right\rfloor + \frac{\alpha^{2\left\lfloor x \right\rfloor + \left\{ x \right\}} + \left\lfloor x \right\rfloor - 1}{2\left\lfloor x \right\rfloor + \left\{ x \right\}} \)
\(\lim_{{x \to 0^-}} f(x) = \alpha - \frac{4}{3}\)
\(⇒\) \(\lim_{{x \to 0^-}} \left[ 1 + \left\lfloor x \right\rfloor + \frac{\alpha^{x + \left\lfloor x \right\rfloor} + \left\lfloor x \right\rfloor - 1}{x + \left\lfloor x \right\rfloor} \right] = \alpha - \frac{4}{3}\)
\(⇒\) \(\lim_{{h \to 0^-}} \left[ 1 - 1 + \frac{\alpha^{-h - 1} - 1 - 1}{-h - 1} \right] = \alpha - \frac{4}{3}\)
\(∴\) \(\frac{\alpha^{-1} - 2}{-1} = \alpha - \frac{4}{3}\)
\(⇒\) \(3α^2 – 10α + 3 = 0\)
\(∴\) \(α = 3 \ or\ \frac{1}{3}\)
\(∵\) α in integer, hence \(α = 3\)
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.


A derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.


Read More: Limits and Derivatives