To find the area of the region \( S \), we compute the integral:
\[
\text{Required Area} = \int_0^2 \sqrt{x} \, dx + 1 \cdot 3 \cdot \sqrt{8}.
\]
Evaluating step by step:
\begin{align*}
y^2 &= 4x, y^2 = 12 - 2x \Rightarrow x = 2, y = \sqrt{8}
A &= \int_{0}^{2} 2\sqrt{x} \, dx + \frac{1}{2} \times 3 \times \sqrt{8}
&= \left[2 \times \frac{2}{3}x^{\frac{3}{2}}\right]_{0}^{2} + 3\sqrt{2} = \frac{4}{3} \times 2\sqrt{2} + 3\sqrt{2} = \frac{17}{3}\sqrt{2}
\therefore
\end{align*}
Adding the remaining area:
\[
\text{Total Area} = \alpha\sqrt{2} \Rightarrow \alpha = \frac{17}{3}
\]
Thus, \( \alpha = \frac{17}{3} \).